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ABSTRACT

The motion detection circuitry of the insect visual system is essential for many of

the remarkable navigational capabilities displayed by flies, such as target tracking

and obstacle avoidance. A computational model of the neuronal circuit responsible

for elementary motion detection (EMD) has previously been developed based upon

the anatomy and physiology of fly brains. However, this model does not match

all the key characteristics observed in neuronal recordings from the fly brain. This

thesis adds three computational features to the neuronally-based EMD model to

better simulate real properties of the insect visual system and to achieve a better

match to the biological data. These features include a realistic model for the optics

of the compound eye, a functional model of phototransduction, and a spatial band-

pass filtering stage that mimics the properties of visual interneurons and produces

motion adaptation features not accounted for by the original model.



9

CHAPTER 1

Introduction

1.1 Motivation

Much of the fly visual system has been evolutionarily conserved for over three hun-

dred million years (Borst et al., 2002). The success of this system is evident from the

existence of over 125 thousand identified and an estimated 125 thousand unidentified

fly species (Groombridge, 1992). The survival of a fly is heavily dependent on its

ability to forage, mate, and navigate in its visual environment, all of which rely on

the information-processing ability of its visual system. For this reason, the fly visual

system has been a subject of particular interest to the vision research community

in the past 50 years (Hassenstein and Reichardt, 1956; Strausfeld and Nässel, 1981;

Yamaguchi et al., 2008).

When a three-dimensional scene is viewed by the compound eye of a fly, the light

intensity from the visual environment is sampled by each facet on the eye to form a

two-dimensional visual image on the retina. During flight, the pattern of this visual

image will change as a result of self-movement (referred to as ‘egomotion’), and the

motion of moving objects in the environment. The neural circuitry in the visual

system computes motion information using the light intensity signals acquired by

the retina, and relays this motion information to the central brain for navigational

control. Information from egomotion is useful for tasks such as visual course control

(Borst and Dickinson, 2003) and object avoidance (Srinivasan et al., 1991), and may

include estimates of the distance of the fly from objects, as well as the speed at which

it is traveling. Information from motion of moving objects in the environment can

be useful for visual tracking during prey pursuit (Collett and Land, 1978; Olberg
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et al., 2000).

The extraction of motion information from a time series of sampled two-

dimensional images is computationally intensive and involves a complex interactive

network of neurons. Several studies have shown similarities between the anatomical

structures and computational mechanisms present in mammalian and insect visual

systems (Hubel and Livingstone, 1987), implying evolutionary convergence across

species. Such convergence suggests that we can use information from flies to un-

derstand primate vision. The small size of flies makes them an especially attractive

organism to study in comparison to primates. A typical fly brain contains ap-

proximately 106 neurons while a typical primate brain contains approximately 1011

neurons (Strausfeld, 1976; Koch, 1999). In addition, each neuron in the fly brain

is individually identifiable. This has allowed each type of neuron to be studied in

repeated experiments resulting in a more reliable characterization, which is useful

for piecing together the components of the neuronal circuit of interest.

Although several previous studies developed models of the motion-detecting cir-

cuitry in flies, most were only concerned with modeling the input-output relation-

ships of the circuitry without consideration of how each component within inter-

acts with one another. Higgins et al. (2004) proposed a neuronally-based motion-

detecting model which was developed based upon the functional organization of

identified neurons in the insect visual pathways. This model has been further elabo-

rated by Rivera-Alvidrez (2005) to include additional features of motion adaptation

observed in fly visual neurons. Nevertheless, the elaborated model was still not able

to fully match all the characteristics observed in recordings from visual neurons.

In this thesis, we explore three additions to the neuronally-based motion-detecting

model, based on observations of the anatomy of the insect visual system. Various

types of visual stimuli are presented to the revised model to gauge whether it is able

to elicit simulated cell responses comparable to those obtained from electrophysio-

logical recordings.
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1.2 Guide to Thesis

In Chapter 2 we start by discussing the previous models of motion detection that are

of primary interest to vision researchers. These include the feature-tracking scheme

(Section 2.1.1) which computes the velocity of an object in the image by dividing

its displacement over elapsed time, the gradient scheme (Section 2.1.2) which com-

putes the velocity at each pixel by using the spatial and temporal derivative of the

luminance signals, and the correlation-based scheme (Section 2.1.3) which emerged

as a result of studies on the optomotor responses of Chlorophanus viridis beetles

(Hassenstein and Reichardt, 1956) and computes motion by comparing the signal

from one photoreceptor and the delayed signal from a neighboring photoreceptor.

In Section 2.2 we follow with a review of the anatomy of the insect visual path-

way, working from the optics, the most superficial layer, inward to the lobula, where

directional motion outputs are first computed. Having this background informa-

tion is important for understanding the visual processes that we are interested in

modeling. Section 2.2.1 describes the structure of the compound eye and how light

intensity in the visual environment is imaged onto the retina. Section 2.2.2 outlines

the conversion of photons into electrical signals and further processing performed

to modify these signals in the photoreceptor cells. In Section 2.2.3 and 2.2.4, the

neurons which are directly implicated in the motion processing pathway in the fly

brain are introduced.

After presenting the relevant information on the anatomy of the insect visual

pathway, we describe the neuronally-based model developed by Higgins et al. (2004)

in Section 2.3. We show how the neuronal response at each cell level is computation-

ally modeled based on the existing knowledge of each neuron of interest described in

Section 2.2. In Section 2.4 we present three features of motion adaptation identified

in studies by Harris et al. (2000), which are essential for maximizing information

transmission in the nervous system by shifting and rescaling the operating range
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of motion-sensitive cells. These features of motion adaptation were, however, not

accounted for by the first version of the neuronally-based model. In Section 2.5 we

introduce an elaborated neuronally-based model (Rivera-Alvidrez, 2005), which was

better able to match the motion-adapted responses observed in neuronal recordings.

The contribution of this thesis to the field of insect vision is described in Chap-

ter 3 and Chapter 4. In Chapter 3 we observe the neuronal interactions in the

motion visual pathway at the anatomical level and revise the elaborated neuronally

based model to match the results obtained in experiments by Harris et al. (2000)

more closely. In Chapter 4 we discuss a number of other additions made to the

neuronally based model that simulate real properties of the insect visual system,

including the addition of an optics stage and a photoreceptor stage (Chapter 4).

In the final chapter (Chapter 5), we summarize the thesis and discuss possible

future work for this project.

1.3 Summary

Most of the previous motion detection models did not account for how motion is

actually computed by a biological system. Even in the case of biologically inspired

models, most were concerned with only mimicking the input-output behaviors of

the neural circuitry implicated in the processing of motion information as a ‘black

box’. Higgins et al. (2004) developed a neuronally based model which was unique

in that each computational element was designed based on the properties of the

individual neuron types found in the fly brain. However, this model was not able to

produce the key motion adaptation characteristics observed in real motion-sensitive

neurons. The elaborations to the model made by Rivera-Alvidrez (2005) were able

to address some, but not all, of the these characteristics. In this thesis, we take

a closer look at the neuronal interactions in the visual motion pathways of flies

and form hypotheses for revising the exisiting computational elements as well as

for implementing additional components in the model. We produce simulated cell
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responses more comparable to those observed in electrophysiology recordings.
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CHAPTER 2

Background

In this chapter, some of the most commonly used motion detection schemes will first

be reviewed in Section 2.1 to introduce some important computational concepts in-

volved in motion detection. In Section 2.2 the anatomy of the insect visual pathway

will be explained in detail starting from the optics of the compound eye to the level

of the central brain. This will provide the reader with sufficient background informa-

tion to understand the neuronally-based elementary motion detection (EMD) model

presented in Section 2.3, which was developed based on the functional organization

of identified neurons in the fly visual pathway. In Section 2.4, we will review three

separate mechanisms observed in the insect visual system involved in maximizing

information transmission. A more recent elaboration of the neuronally based model

that accounts for some additional properties which were not addressed in previous

implementations of the model will be discussed in Section 2.5.

2.1 Models of Motion Detection

Many different models have been proposed for extracting motion information from

the visual image. Of these, three classes of visual motion detection schemes are

of primary interest to vision researchers: feature-based schemes (Kramer et al.,

1997; Braddick et al., 1980; Tomasi and Kanade, 1991), gradient-based schemes

(Buchner, 1984; Horn and Schunck, 1981; Marr and Ullman, 1981), and correlation-

based schemes (Hassenstein and Reichardt, 1956; Barlow and Levick, 1965; Adelson

and Bergen, 1985; van Santen and Sperling, 1985). Both the feature-based and the

gradient-based schemes were developed based on computational theory, while the
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correlation schemes were developed from modeling biological visual systems using a

mathematical approach.

Studies in the past have concluded that in biological systems motion is com-

puted from local light intensity information by two-dimensional, retinotopically or-

ganized arrays (Nakayama, 1985) with the following three requirements (Poggio and

Reichardt, 1973; Buchner, 1984; Reichardt, 1987). Firstly, motion computation re-

quires at least two spatially separated inputs. Since motion needs to be represented

as a vector, it requires at least two points in space. Secondly, it requires a non-

linearity, which allows the preservation of information on the temporal sequence

of input signals. And thirdly, motion computation requires an asymmetry to dis-

tinguish between motion in different directions when the signals are interchanged

between two inputs. All three classes of motion detection schemes discussed below

match these requirements in some form or another.

2.1.1 Feature-Based Schemes

In the field of computer vision a ‘feature’ is a broadly defined term. A feature can

refer to a point, an edge, or an object in an image. Feature-based motion detection

depends on the identification and location of such features. The direction of motion

of a feature is determined by its displacement over time, and its velocity is computed

by dividing the amount of displacement by the elapsed time. The “facilitate and

sample” method (Kramer et al., 1997) is a simple example of motion detection

using feature tracking. This method measured the speed of an edge in a moving

image using two photoreceptors of a fixed spacing. When the first photoreceptor is

activated by a passing feature, an exponentially decaying function is initiated which

is sampled when the second photoreceptor is activated. The value of the sampled

function provides the time elapsed between the activations of the two photoreceptors,

which combined with the spacing between the two photoreceptors is sufficient to

provide an estimate of the speed of the moving feature.
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While feature tracking is a popular motion detection method in computer vision

research, it offers little insight into the early stages of visual motion processing in

biological systems. Several psychophysical and behavioral experiments have shown

that various species of insects were capable of detecting motion of visual stimuli

without prominent features (Braddick et al., 1980). Other disadvantages include the

computational expense of selecting and identifying a feature (Tomasi and Kanade,

1991) as well as the difficulty in continuously tracking a feature in the frames of the

image stream, referred to as the correspondence problem.

2.1.2 Gradient-Based Schemes

Gradient-based models are used to compute velocity information by using the spa-

tial and temporal derivatives of the luminance at each pixel in the image. In the

case of one-dimensional motion, velocity at each pixel can be determined from the

luminance gradient as follows:

v = − It
Ix

=
dx

dt
(2.1)

where v is the velocity of the pattern, and It and Ix are respectively the temporal

and spatial derivatives of the luminance. This method was originally proposed by

Limb and Murphy (1975) and can also be extended to a two-dimensional version

(Horn and Schunck, 1981) as follows

v = − It√
Ix

2 + Iy
2

(2.2)

where Ix is the spatial derivative of the luminance along the x-axis and Iy is the spa-

tial derivative of the luminance along the y-axis. However, this method is subject to

the aperture problem like all two-dimensional motion detection schemes (Nakayama

and Silverman, 1988). Since each receptor in a biological system has only a limited

visual field, it is as if the receptor is looking through a small window or aperture.

Therefore, only motion perpendicular to an edge (i.e. motion along the direction
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Figure 2.1: A common implementation of gradient-based motion detectors from
Buchner (1984). The implementation is described by Equation 2.1. The tempo-
ral derivative It is approximated using the high-pass filters (HPF) and the spatial
derivative Ix is approximated by the subtraction (Σ) of the inputs received by two
neighboring photoreceptors (PR).

of the luminance gradient of the image pattern) can be detected. Equation 2.2

will only provide velocity in the orthogonal direction. An implementation of the

gradient-based model (see Figure 2.1) uses high-pass filters to model the temporal

derivatives and the subtraction between two adjacent sampling points (or photore-

ceptors) to model spatial derivatives (Buchner, 1984).

The biological plausibility of gradient-based models is questioned due to the

presence of the divisive element, since there is no biological evidence supporting

the existence of such an operation in the motion pathway. In addition, due to the
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spacing between photoreceptors in a biological system, the output of the model is

heavily dependent on the spatial frequency of the visual stimulus as observed in

motion detection schemes belonging to the classes of gradient-based schemes and

correlation-based schemes (Borst and Egelhaaf, 1989). Another disadvantage of

this model is that the derivatives enhance noise in the input signal. If the spatial

derivative is small, the noise will be further amplified. Also, if the spatial derivative

is zero, the divisive element will not be able to produce any meaningful output.

While most of these problems have been addressed in an elaborated biologically

inspired model (Srinivasan, 1990), a clear pathway in the insect visual system for

such a circuit has not yet been identified. Correlation-based models, which will be

discussed in the following section, remain the most biologically supported motion

detection schemes.

2.1.3 Correlation-based Schemes

There are several versions of correlation-based motion detectors, but one of the

most well-known is the Hassenstein-Reichardt (HR) model (1956). The HR model

was biologically-inspired and was developed as a result of studies on the optomotor

response of Chlorophanus viridis beetles. The optomotor response is a turning be-

havior for gaze stabilization in response to slow wide-field motion in the environment

during flight.

These modeling studies also helped guide the discovery of directionally-selective

lobula plate tangential cells (LPTCs) in flies which are believed to play an important

role in producing optomotor behaviors (Egelhaaf and Borst, 1993). The responses

observed from LPTCs were found to match the predictions from the HR model.

Operation of the HR model is based on the comparison between the signal from

one photoreceptor and the delayed signal from a neighboring photoreceptor (see

Figure 2.2). If motion is detected, one of the two multiplicative units will output

a large positive value while the other unit outputs a small value. At the output of
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the summing unit, one would obtain a positive value for motion in one direction

and a negative value for motion in the opposite direction. For instance, if a left-

to-right motion stimulus is present, the left photoreceptor will be activated before

the right photoreceptor. The inputs to the left multiplicative unit will consist of

the delayed signal from the left photoreceptor and the direct signal from the right

photoreceptor, while the right multiplicative unit receives the direct signal from the

left photoreceptor and the delayed signal from the right photoreceptor. The result

is a large positive response (greater coincidence of two signals) at the left arm and a

small positive response (less coincidence of two signals) at the right arm, producing

a positive final output from the detector. The opposite case of right-to-left motion

will produce a negative value at the output. Also note that flickering visual stimuli

will yield an output of zero because the summing element will cancel out the equal

responses from the two arms in the detector.

An elaboration by van Santen and Sperling (1984) resulted in a version where

the point-like receptive fields of the original HR model were replaced with spatial

receptive fields, and temporal high-pass filters were added to the outputs of the

photoreceptors. These modifications were able to produce outputs that better match

data obtained from psychophysical experiments on flies (van Santen and Sperling,

1985). While the HR model is very effective in modeling electrophysiological data

accurately, it does not provide insights into the specific neurons and synapses in the

visual pathway.

2.2 Optics and Anatomy of the Insect Visual Pathway

Understanding the optics and anatomy of the insect visual system is key to under-

standing the visual processes that we are interested in modeling. In this section

I will provide the necessary background information on the insect visual pathway

starting with the optics of the compound eye and the properties of the photorecep-

tors in Section 2.2.1 and Section 2.2.2, respectively. The optics of the compound
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Figure 2.2: The Hassenstein-Reichardt (HR) model. The low-pass filters (LPF) are
used as delay elements, such that the input to one photoreceptor is multiplied (π)
by the delayed input from its adjacent photoreceptor. Directionally-selective output
is then computed by subtracting (Σ) the output of one multiplicative unit from the
output of the other multiplicative unit. The output value is a positive for motion
in one direction and negative for motion in the opposite direction.
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eye serve as an apparatus for light collection while the photoreceptors collect and

convert photons into electrical signals. In Section 2.2.3 the unique structural ar-

rangement of the photoreceptor outputs, referred to as neural superposition, will be

described. This type of structural arrangement is especially advantageous for vision

in low-light conditions. Lastly, the subsequent processing of light information by

the three layers of the optic lobes will be discussed in Section 2.2.4. This review will

focus on the fly visual system since most of the studies on motion-sensitive visual

neurons have been performed on various species of flies.

2.2.1 Optics

Each compound eye of the fly (see Figure 2.3) is composed of thousands of facets

referred to as ommatidia, with each ommatidium containing eight photoreceptors

(R1-R8) (Beersma et al., 1977). In general the size, density, and the angular spacing

between the ommatidia (inter-ommatidial angles) vary across a compound eye. The

size of the ommatidia affects the amount of photons collected. Larger ommatidia are

more able to collect light compared to smaller ommatidia. The inter-ommatidial an-

gle determines the visual acuity. Regions with smaller inter-ommatidial angles are

better at resolving details in an image than regions with larger inter-ommatidial

angles. In the frontal region of the fly compound eye one can typically observe a re-

gion with larger and more flattened ommatidial facets with smaller inter-ommatidial

angles in comparison to other regions of the eye. This specialized grouping of om-

matidia is termed the ‘acute zone’ (Land and Eckert, 1985) and produces an area

with high visual acuity and sensitivity (Land, 1981), important for behaviors such as

visual tracking (Land and Collett, 1974). On the other hand, the ommatidia found

in the lateral regions of the compound eye have larger inter-ommatidial angles and

lower visual acuity. It has been suggested by Land and Nilsson (2002) that this

decrease in visual acuity is a form of compensation for the fast motion experienced

by the lateral regions of the eye during forward flights because it reduces blurring.
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Figure 2.3: The compound eyes of a fly as illustrated by Robert Hooke. Each facet
on the surface of a compound eye is referred to as an ‘ommatidium’. The density and
size of the ommatidia vary across the eye depending on the functional specialization
of each part of the eye. Reproduced without permission from Hooke (1665).

Light information is focused by the lens of each ommatidium before it reaches

the photoreceptor, where a series of chemical phototransduction processes take place

before the processed information is sent to the first layer in the visual ganglia. The

three layers – the lamina, the medulla, and the lobula complex – in the visual ganglia

are depicted in Figure 2.4 and contain the components of each visual processing

unit in the eye referred to as an optic cartridge. An optic cartridge is the set of

cells that process each visual sampling unit under a single ommatidium. The optic
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Figure 2.4: Optic lobe of an adult fly. The left side corresponds to the retina side
and the right side points to the central brain. La and Me indicate the location of
the lamina and the medulla, respectively. LP and Lo indicate the location of the
lobula plate and the lobula, respectively, within the lobula complex. Xo denotes the
outer optic chiasm connecting the lamina and the medulla. Xi denotes the inner
optic chiasm. Reproduced without permission from Tix et al. (1997).

cartridges are said to have a retinotopic organization due to the fact that adjacent

optic cartridges are responsible for processing light information from adjacent points

in a visual image.

2.2.2 Photoreceptors

During the phototransduction process, photoreceptors measure light through the

absorption of photons and convert the intensity information received into electri-

cal signals (Hardie, 2001) at the level of the retina. Light intensity in a natural

environment can have a dynamic range up to ten orders of magnitude (from 1010

to 1020 photons/s/m2) whereas a typical neuron has a limited dynamic range of

approximately one to two orders of magnitude (graded potential of -70 to +50 mV
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and a noise level of 5 mV). In order to deal with such a large dynamic range in the

inputs, the photoreceptors in most species have developed adaptive mechanisms to

accommodate for this varying light intensity (van Hateren and Snippe, 2001). In

order to dynamically adjust for the wide range of background luminances, photore-

ceptors spatially and temporally code for contrast and adjust their gains in order

to reduce the signal-to-noise ratio (Juusola et al., 1994). The gain control prevents

the photoreceptor responses from saturating at high light levels as well as increases

the sensitivity of the photoreceptors to contrast. This type of adaptive mechanism

can be computationally described by a transition from a low-pass filter to a band-

pass filter as the photoreceptor adapts to variations in the luminance conditions

(Jarvilehto and Zettler, 1971).

2.2.3 Neural Superposition

Apposition eyes are the most common form of compound eyes in arthropods. In the

majority of apposition eyes, all the photoreceptors within an ommatidium are fused

together to form a single light-guiding structure known as a rhabdom (Figure 2.5

left). In a typical apposition eye, each rhabdom samples light information from a

slightly different angle, such that all eight photoreceptors within a single rhabdom

sample light from the same direction (Figure 2.6a). Further studies on neural in-

terconnections in the fly eye led to the discovery of a subclass of apposition eyes

referred to as neural superposition eyes (Kirschfeld and Franceschini, 1968). Neural

superposition is exhibited by dipteran flies and differs from a normal apposition

eye in that each of the eight photoreceptors from within an individual ommatidium

projects to a separate “rhabdomere” (Land and Nilsson, 2002) as shown in Fig-

ure 2.5 right. Each rhabdomere in a single rhabdom samples light information from

a different angle (Figure 2.6b). In the lamina layer of the optic lobe, the six outer

rhabdomeres (R1-R6), which are involved in motion processing (Yamaguchi et al.,

2008), project to neighboring optic cartridges, while the two inner rhabdomeres (R7



25

Figure 2.5: Rhabdom of an apposition eye and rhabdomeres of a neural superposi-
tion eye. In an apposition eye (left) all photoreceptors within an ommatidium are
fused together to form a single light guiding structure referred to as a rhabdom. In
a neural superposition eye (right), each of the eight photoreceptors from within an
individual ommatidium projects to a separate ‘rhabdomere’ such that there are a
total of eight rhabdomeres within a rhabdom. Reproduced without permission from
Land (1997).

and R8), which are involved in color vision, bypass the lamina and terminate in the

medulla (Hardie, 1985). In the end, each optic cartridge receives light information

from a given angle contributed by six neighboring ommatidia, which is essential for

vision in low-light conditions.

2.2.4 Visual Neurons in the Optic Lobe

As briefly mentioned earlier, the optic lobes consist of three neuropils: the lamina,

the medulla, and the lobula complex (Figure 2.4). The lobula complex is further

subdivided into two separate neuropils: the lobula and the lobula plate. As visual

information travels deeper from the superficial layers of the optic cartridges, the pro-

cessing of light information becomes increasingly complex and specialized. Simple

first-order filterings are first performed at the lamina level to remove redundancy

from the visual inputs. As the pre-processed signals reach the medulla, visual in-

formation is segregated into pathways which are responsible for different tasks such

as the processing of motion and color information. In the lobula, outputs of the
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(a)

(b)

Figure 2.6: Comparison between an apposition eye and a neural superposition eye.
The shaded beams represent the light information coming from a point in a distant
image and the arrows indicate the optical axes of the ommatidia. In an apposition
eye (a) only a single rhabdom (shown in black) samples the light information coming
from a point, while in a neural superposition eye (b) the light information from
the same point is sampled by several rhabdomeres (shown in black). Reproduced
without permission from Land (1997).
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medulla are further refined to extract more specific visual information, which is pro-

jected to the central brain for higher-order processing. Although there are a large

number of neurons residing in the optic lobes of a fly, we shall focus the following

discussion on a subset of neurons which are evolutionarily conserved across many

insect species and have been directly implicated in visual motion processing.

The lamina is widely believed to be the site where redundant information in

the visual input is discarded through the spatial and temporal high-pass filtering

properties of neurons at this level (Laughlin et al., 1987). In addition, in neural

superposition eyes, the duplicate visual information from multiple photoreceptors is

organized as outlined in Section 2.2.3.

The lamina houses the amacrine cells (AMs), the T1 “basket” cells (T1s), and

the lamina monopolar cells (LMCs), among other smaller neurons. The AM cells

receive visual signals from the photoreceptors and are believed to play a role in lateral

inhibition due to their widespread network of interconnections between neighboring

optic cartridges. The T1 cells are post-synaptic to the AM cells (Campos-Ortega and

Strausfeld, 1973). Each T1 cell receives AM cell inputs from six neighboring optic

cartridges and responds transiently to light with a sign opposite to that observed at

the photoreceptor level and with an additional small sustained component (Douglass

and Strausfeld, 2005). Out of the five identified types of LMCs (L1-L5), the L2 cells

are the most well studied and are believed to be the LMCs most implicated in motion

processing. Like AM cells, an L2 cell receives input from a single photoreceptor.

L2 cells respond transiently to increasing luminance by hyperpolarizing and show

no significant response to sustained illumination (Coombe et al., 1989). Inhibition

between neighboring LMCs results in the spatial and temporal interactions that are

believed to be key to reducing redundancy in the lamina (Srinivasan et al., 1982).

The axons extending from the lamina undergo the first optic chiasm before they

reach the second neuropil in the optic lobe. Within the medulla reside the trans-

medullary cells (TMs). The terminals of L2 and T1 cells both synapse onto the
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dendrites of TM1 cells (Campos-Ortega and Strausfeld, 1973). The TM1 cell level

is believed to be the earliest site where non-directional motion is detected. Studies

by Douglass and Strausfeld (1995) have suggested that TM1 cells respond strongly

to motion whereas flickering visual stimuli only elicit weak responses. Another class

of TM cells, the TM9 cells, receives inputs from the TM1 cells through a series of

complex relays.

Across the second optic chiasm from the medulla is the lobula complex. T5

cells residing in the lobula are believed to be pre-synaptic to lobula plate tangential

cells (LPTCs) in the lobula plate (Strausfeld and Lee, 1991). Each T5 cell integrates

signals received from TM1 and TM9 cells from neighboring optic cartridges. Studies

by Sinakevitch and Strausfeld (2004) have also identified a GABA-immunoreactive

interneuron in the T5 dendritic layer which has an inhibitory role at the T5 level.

Each optic cartridge has four T5 cells, and each cell of the quartet in an individual

optic cartridge extends to each of the four layers in the lobula plate which is sensitive

to motion in a different orientation (Buchner et al., 1979). Outputs at this level

are considered outputs of the EMD. Since only motion from small regions of the

visual field is computed here, the EMDs are considered small-field sensitive. EMD

outputs from the lobula are relayed to the lobula plate for further signal integration

to extract more motion information. The lobula plate has a wide receptive field

(termed wide-field sensitive) and contains approximately sixty identifiable lobula

plate tangential cells (LPTCs) in each hemisphere (Hausen, 1982; Hengstenberg,

1982; Eckert and Dvorak, 1983) whose outputs are directionally-selective. Different

types of LPTCs can be classified by the orientation which they respond to (e.g.

horizontal or vertical motion) and their response mode (spiking, graded response,

or both) among other properties (Borst et al., 2002). Out of the LPTCs selective to

motion in the horizontal orientation, the centrifugal (CH) cells respond with graded

potentials, the cells H1 through H4 have spiking responses, whereas the horizontal-

system (HS) cells respond with a mixture of both. Out of the LPTCs selective to
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motion in the vertical orientation, the vertical-system (VS) cells respond in a similar

manner to the HS cells, while the V1 cells are purely spiking cells. The LPTCs have

been the subject of intense study due to their importance in the optomotor response

mentioned in Section 2.1.3 during flight control (Hausen, 1984).

2.3 Neuronally Based Model

A model of elementary motion detection was developed by Higgins et al. (2004)

based on studies of identified neurons in the fly visual system. Motion responses

obtained from this model match those of the HR model. The model predicts the

responses of a subset of neurons involved in motion information processing in the fly

brain through the three neuropil layers to the lobula plate. In this section we will

show how the neuronal response at each cell level is computationally modeled based

on the existing knowledge of each neuron of interest described in Section 2.2.4. The

model developed by Higgins et al. (2004) is presented in Figure 2.7. It shows the

neuronal circuitry and the mathematical computations involved in generating the

cell responses in the pathway.

In the lamina layer, the amacrine cell (AM) and the laminar monopolar cell (L2)

receive input from the photoreceptors. The AM cell then synapses onto the basket

T-cell (T1) and this synapse is modeled with a sign-inverted relaxed high-pass filter

(RHPF) since the response is opposite of that of the photoreceptors and contains a

small component of low frequencies. The T1 cell response is then computed as the

sum of two low-pass filtered neighboring AM cells in the 1-D model (or of six low-

pass filtered neighboring AM cells in the 2-D model). The response of the L2 cell is

implemented as a sign-inverted high-pass filter (HPF) since no sustained component

was observed in previous electrophysiological studies (Coombe et al., 1989). In the

medulla layer, the transmedullary cell (TM1) receives inputs from both T1 and L2

and performs summation on these signals. TM1 is non-directionally sensitive, which

means that the mean cell responses to motion in all directions are identical. In the
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Figure 2.7: The one-dimensional neuronally based model of elementary motion de-
tection. This model as proposed by Higgins et al. (2004) describes the response
of each neuron type implicated in motion information processing in the optic lobe,
including the amacrine (AM) cells, the lamina monopolar 2 (L2) cells, the basket
T-cells (T1), the transmedullary (TM1 and Tm9) cells, and the bushy T-cells (T5).
LPF and HPF denote low-pass filters and high-filters, respectively. RHPF stands
for a ‘relaxed-high pass filter’ which represents a high-pass filter that retains a small
sustained component. ’Shunt’ represents shunting inhibition and the summing op-
erations are represented by Σ.
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lobula, the T5 cells receive signals from the TM1 cell and the TM9 cell (modeled as

a delayed version of TM1) from the neighboring visual unit. Together, the T5, TM1

and TM9 cells form a Barlow-Levick motion detector (Barlow and Levick, 1965),

where TM1 acts as an excitatory input and TM9 acts as an inhibitory input. The T5

cells receive excitatory inputs from one local TM1 cell and a number of neighboring

TM1 cells, whose relative orientation to each other determines the preferred-null axis

of the T5 cells. Note that the preferred direction refers to the direction of motion

which a cell responds maximally to, and the null direction refers to the direction of

motion which a cell responds minimally to.

In this model motion is computed in two stages. Non-directional motion is first

computed at the TM1 level by comparing a local signal with delayed signals from

neighboring optic cartridges. Directional motion then is computed at the T5 level

through the special geometric arrangement and non-linear shunting inhibition of the

T5 cells by the TM1 and TM9 cells. The model yields comparable results to those

from the HR model (see Higgins et al., 2004). However, unlike the HR model, it

can be used to further the understanding of the neuronal basis of motion detection

since it is based upon the functional organization of identified neurons in the neural

circuitry of the insect visual system.

2.4 Motion Adaptation

Motion adaptation is the decrease in the response of cells to sustained motion stim-

uli. Many species exhibit motion adaptation when viewing images of high velocity.

Studies have shown that this type of adaptation is essential for maximizing informa-

tion transmission in the nervous system (Brenner, 2000) by shifting and rescaling

the operating range of motion-sensitive cells (Maddess and Laughlin, 1985). Motion

adaptation in the fly visual system has been of much interest due to its similarity to

the adaptive mechanisms in the primate visual system (Kohn and Movshon, 2003).

When presented with continuous motion stimulation, the LPTCs in the fly optic
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Figure 2.8: The effect of motion adaptation on the mean LPTC cell responses.
Afterpotential (a) causes the mean LPTC response to decrease uniformly over the
entire range of pattern contrasts. When the effect of afterpotential is removed, the
effect of the reduction in contrast gain (c) that causes the rightward shift of the
trace becomes more visible. In such case a higher pattern contrast is necessary to
elicit the same amount of LPTC response compared to before adaptation. One can
also observe a lower saturation level indicated by b.

lobe were observed to have responses which decay over time (Maddess and Laugh-

lin, 1985). It was also discovered that the rate of decay increases with an increase

in the temporal frequency of the visual stimulus, and that this adaptive mechanism

takes place at the EMD level in the lobula. In a series of experiments performed by

Harris et al. (2000), the effects of presenting high-contrast, high-frequency motion

stimuli (referred to as strongly adapting stimuli), on the responses of LPTCs were

further characterized. Three features of motion adaptation were identified from this

study (see Figure 2.8): the after-potential, the reduction in saturation level, and

the reduction in contrast gain. Each of these features will be discussed briefly in

Section 2.4.1, Section 2.4.2, and Section 2.4.3, respectively.
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2.4.1 Afterpotential

Evidence for the effect of an afterpotential in the fly visual system was first dis-

covered by Maddess (1986). After exposure to stationary or slow-moving visual

stimuli, the HS cells responded with a reduction in their baseline potentials. It was

suggested that the afterpotential might be used to attenuate signals from far-away

or slow-moving objects (Maddess, 1986). Others have also proposed the possibility

of its role in dynamically adjusting the temporal resolution in the motion pathway

in response to varying image velocities (Harris and O’Carroll, 2002). The afterpo-

tential is very similar to the waterfall illusion observed in the human visual system

(Tootell et al., 1995), where one experiences the visual illusion of perceiving move-

ment from a still object in one direction after presentation of a moving stimulus

in the opposite direction. In flies, this has been suggested to be the result of the

imbalance between a pair of mutually antagonistic neurons (sensitive to motion in

opposite directions) in the lobula plate when the response of the neuron sensitive to

the direction of motion is attenuated (Srinivasan and Dvorak, 1979).

2.4.2 Reduction in Output Range

Recordings from HS cells (Egelhaaf and Borst, 1989) have shown their responses to

reach a saturating level as the contrast of the visual stimulus increases. Egelhaaf and

Borst (1989) implicated this saturating behavior in the ability of the cells to estimate

the temporal frequencies of visual stimuli independent of their contrasts. In the

series of experiments performed by Harris et al. (2000), the contrast curves (mean

LPTC response versus contrast of motion stimulus) were generated for responses

before and after the presentation of a strongly adapting stimulus. A lower saturating

level was observed from the contrast curve of post-adapted responses even after the

effect of the afterpotential was removed. This reduction in saturating level represents

an overall decrease in the output range of LPTC responses. Nevertheless, its effect
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in motion adaptation as a whole is very small in comparison to the effects from the

afterpotential and the reduction in contrast gain.

2.4.3 Reduction in Contrast Gain

Among the three features of motion adaptation described here, experiments by

Harris et al. (2000) showed that the reduction in contrast gain contributes the most

to the shift of the contrast-response curve from post-adaptation. This effect was

found to be more prominent when the HS cells are adapted to motion than to

flicker. In addition, adaptation with motion stimuli in both the preferred and the

anti-preferred (180◦ from the preferred) directions produces a comparable amount

of decrease in contrast gain. Even orthogonal motion stimuli elicited a similar

response. Since this mechanism does not seem to be directionally-selective, it has

been suggested that this process is small-field sensitive and takes place in neurons

pre-synaptic to wide-field neurons (Maddess and Laughlin, 1985). This is to be

compared to the afterpotential and the reduction in output range, both of which were

shown to be activity-dependent as well as directionally-sensitive, and are believed to

take place at the level of LPTCs. Harris et al. (2000) explained that the function of

the reduction in contrast gain might be to restore sensitivity of the visual pathway

to varying contrast levels when the LPTCs are operating near saturation level from

high-contrast visual stimuli. However, to optimally avoid saturation of the visual

system, Harris et al. (2000) proposed that this mechanism should take place before

the saturation mechanism at the TM9 level and reside before the EMD circuitry.

2.5 Elaborated Neuronally Based Elementary Motion Detector Model

The 2004 neuronally based EMD model has been modified in the past few years,

enabling it to better match physiological data recorded from LPTCs. In both the HR

model and the original neuronally based EMD model, the simulated LPTC responses
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increase as the square of the visual input contrast levels. However, this squared

response is not biologically possible due to the limited dynamic range of neurons

described in Section 2.2.2. In Rivera-Alvidrez and Higgins (2005), a saturating

nonlinearity was incorporated into the neuronally based EMD model to produce

the contrast saturation observed in LPTCs. In the same set of studies, pattern size

saturation was also implemented to reduce the sensitivity of the model to sparseness

in the moving visual field due to the varying size of the visual stimuli. In terms of

modeling features of motion adaptation, the reduction in contrast gain is of the

most interest since out of the three features described in Section 2.4 it was the only

one hypothesized to take place at the EMD level. In Rivera-Alvidrez (2005), the

reduction in contrast gain discussed in Section 2.4.3 was modeled as a frequency-

dependent synaptic depression.

In Rivera-Alvidrez and Higgins (2005), saturating elements were inserted into

the neuronally based EMD model at the synapses from the TM1 cells onto the TM9

and the T5 cells, similar to ones used by Egelhaaf and Borst (1989) to produce the

contrast saturation in the HR model. The saturating element is denoted by the ‘S’

in Figure 2.9 and was modeled as a sigmoid function in Equation 2.3:

S(x) = A+B · 1

1 + e−C·x (2.3)

where A, B, and C were set to -0.085, 0.17, and 43, respectively to match electro-

physiological data. Pattern size saturation was modeled at the LPTC level where

the integration of EMD inputs takes place. This saturation was implemented using

the gain control equation (Equation 2.4 below) described in Borst et al. (1995) and

Single et al. (1997):

V =
Eege + Eigi
ge + gi + gleak

(2.4)

where Ee and Ei are the excitatory and inhibitory reversal potentials, ge and gi

are the excitatory and inhibitory conductances, respectively, and gleak is the leakage

conductance. In the elaborated model, Ee, Ei were set to 0.4 and -0.3 based on the



36

Figure 2.9: The one-dimensional elaborated neuronally based model of elementary
motion detection. This model from Rivera-Alvidrez (2005) retains all components
from the original one-dimensional neuronally based model and incorporates addi-
tional computational components including the frequency-dependent synaptic de-
pression at the TM1 level (A), the saturating non-linearity (S) at the inputs to the
T5 cells, and the pattern size gain control (G.C.) for the integration of T5 outputs
into LPTC responses. ‘POS’ represents the operation which discards any negative
component of the input signal.
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description in Single et al. (1997), while the value of gleak was empirically set to 3.5

S. ge and gi represented inputs coming from the rectified responses of the preferred-

direction T5 unit and the null-direction T5 unit, respectively. The pattern size

saturation is denoted by the ‘G.C.’ (gain control) in Figure 2.9.

Referring to Figure 2.9, Rivera-Alvidrez (2005) implemented the reduction in

contrast gain before the contrast saturation (‘S’ blocks) to restore the contrast sen-

sitivity by decreasing the responses below the saturation level, as suggested by

Harris et al. (2000). As previously mentioned, the reduction in contrast gain is

non-directionally selective and more prominent when adapted to motion compared

to flicker. Therefore the most likely location in the original neuronally based EMD

model (refer to Figure 2.7) for this mechanism to occur is at the TM1 level. The TM1

cells respond non-directionally to preferred and null directions as well as to both

horizontal and vertical directions. Additionally, TM1 may be capable of differenti-

ating between motion and flicker (Higgins et al., 2004). The mechanism responsible

for the reduction in contrast gain is represented by the ‘A’ (adaptation) blocks in

Figure 2.9. The depression of the synaptic responses from the TM1 cells onto the

TM5 cells and the TM9 cells was modeled as a frequency-dependent synaptic de-

pression. A depression gain factor was introduced such that the post-synaptic TM1

cell response can be modulated as shown in Equation 2.5.

TM1d = f(t) ·D(tr) + Vrest (2.5)

where TM1d is the post-synaptic depression TM1 cell response, f(t) is pre-synaptic

TM1 cell response, D(tr) is the depression gain factor, and Vrest is the resting po-

tential of the cell. The value of the depression gain factor decreases when the pre-

synaptic TM1 cell response is above its resting potential and rising, and the gain

factor increases if the pre-synaptic TM1 cell response is below resting potential and

falling. The value of this gain factor D(t) varies between 0 and 1, and is determined



38

using Equation 2.6:

D(t) =


1

1
D(tr)

+f(t)·D(tr)
if ( ∂f(t)

∂t
> 0 and f(t) > 0)

1

1+( 1
D(td)

−1)·e
− (t−td)

τd

otherwise
(2.6)

where tr represents the time at which the rise of the last positive modulation be-

gins, td is the time when the positive modulation ends, and τd is the empirically

determined time constant of recovery from the synaptic depression.

The implementation of this synaptic depression was able to produce LPTC re-

sponses qualitatively similar to those recorded by Reisenman et al. (2003) and dis-

played a significant reduction in contrast gain after adaptation with motion com-

pared to the responses from before adaptation. Nevertheless, contrast-response

curves generated using this elaborated model showed very little difference between

the motion-adapted responses and the flicker-adapted responses when compared

to data from Harris et al. (2000). As discussed in Section 2.4.3, adaptation to

flicker generally produces weaker responses from the HS cells compared with adap-

tation to motion. When the one-dimensional EMD model was used instead of the

two-dimensional version a more pronounced difference between motion-adapted re-

sponses and flicker-adapted responses could be observed. This is due to the fact

that only two neighboring photoreceptor cells are summed (as opposed to six neigh-

boring photoreceptors in the two-dimensional model) in the computation of the T1

response, therefore reducing its response to flicker compared to motion.

It has been hypothesized that the addition of early visual processing might result

in the desirable response through the inhibitory interaction between the different

types of AM cells. The next chapter will describe further efforts on modifying this

elaborated neuronally based EMD model specifically to produce different amounts

of reduction in contrast gain between the motion-adapted responses and the flicker-

adapted responses in order to match the results obtained in experiments by Harris

et al. (2000) more closely. A number of other additions made to the neuronally
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based EMD model that simulate real properties of the insect visual system will also

be discussed.
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CHAPTER 3

An Improved Model of Contrast Gain Adaptation

In Section 2.5 we learned that the elaborated neuronally-based EMD model was not

able to fully produce the difference observed between the motion-adapted contrast-

response curves and the flicker-adapted contrast-response curves presented in Harris

et al. (2000). In this chapter, we propose the implementation of a center-surround

spatial band-pass filter at the amacrine cell level, to suppress the response to flicker-

ing stimuli and relatively enhance the response to motion stimuli in order to produce

a better match to physiological data. We first present a number of clues from pre-

vious studies of fly neuroanatomy providing supporting evidence for this proposed

implementation.

As mentioned in Section 2.2.4, the lamina is believed to be the site of redun-

dancy reduction in the insect visual pathway (Laughlin et al., 1987). Studies from

Sinakevitch and Strausfeld (2004) suggest that both type 1 amacrine cells (AM1)

and type 2 amacrine cells (AM2) have widespread networks such that the response

of a single optic cartridge can travel and spread across several levels of neighboring

optic cartridges. L2 cells from neighboring optic cartridges do not have connections

to one another (Strausfeld and Nässel, 1981), but they exhibit the center-surround

spatial antagonism (Srinivasan et al., 1982) found in cells belonging to a spreading

network. There is no direct synaptic interaction between amacrine cells and L2

cells, however, both cells are both pre- and post-synaptic to the photoreceptor cells

(Strausfeld and Nässel, 1981).

Combining these pieces of information, we hypothesize a series of synaptic inter-

actions between the photoreceptor cells, the amacrine cells, and the L2 cells in the

lamina as follows. AM1 and AM2 cells receive synaptic inputs from photoreceptor
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cells. The signals spread across the network of AM1 cells and the network of AM2

cells, such that each AM1 or AM2 cell represents the weighted sum of its local sig-

nals and the signals from its neighboring optic cartridges. An inhibitory interaction

between the AM1 and AM2 cells (that could possibly occur at the amacrine cell

level or the photoreceptor cell level) results in the subtraction of the AM1 responses

from the AM2 responses before the signals reach the L2 cell level. These signals are

hypothesized to be communicated back to the photoreceptor cells, which then relay

the signals to the L2 cells. We hypothesize that in some way the photoreceptor cells

act as the liaison between the AM cells and the L2 cells. It has in fact been widely

accepted that the adaptive mechanisms observed in the photoreceptor cells are not

intrinsic to themselves, but rather the result of a series of synaptic connections to

downstream neurons such as the AM cells and the L2 cells (Juusola et al., 1994).

Based on this hypothesis, we propose that the center-surround spatial filter at

the L2 level is composed of the subtraction of a Gaussian spreading network of

AM1 cells from a similar spreading network of AM2 cells. The filtered output from

this processing by the amacrine cells is relayed to and shared by the L2 cells. To

reflect this center-surround spatial filtering in the two-dimensional EMD model,

we add a computational module (Figure 3.1) that is mathematically described by

Equation 3.1:

AMout(i) = [f(i) ∗ g2]− w × [f(i) ∗ g1] (3.1)

with

g1(n1, n2) = e−(n2
1+n

2
2)/2σ2

1

g2(n1, n2) = e−(n2
1+n

2
2)/2σ2

2

where AMout(i) is the output signal from the amacrine network at the ith frame, f(i)

is the two-dimensional array of photoreceptor responses at the ith frame, ∗ denotes

the convolution operation, g1 and g2 are the spatial Gaussian filters, and w is a

scalar weight used for determining the amount of attenuation of the spatial mean
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component of the visual stimulus. Each Gaussian filter is normalized such that the

sum of the coefficients is equal to 1, to ensure that signals are passed through with

unity gain. The subtraction represents the inhibitory interaction between AM1 and

AM2 cells. The use of the spatial Gaussian filters g1 and g2 represent the spreading

networks of AM1 and AM2 cells, respectively. This center-surround-type spatial

filter allows the preservation of motion information while eliminating the spatial

mean luminance from flickering stimuli by computing the difference between the

two Gaussian filters of different widths, σ1 and σ2, with σ1 larger than σ2. In

addition, the value of w can be adjusted between 0 and 1 to control the amount

of the spatial mean luminance in the motion pathway, since recorded data from

the LPTCs did reflect some responses to flickering visual stimuli. A w of 0 allows

the passage of all the spatial mean components while a value of 1 only enables the

passage of transient components.

With the addition of the center-surround spatial filter, the artificial saturat-

ing elements ’S’ from the previous model are no longer sufficient to produce the

amount of saturation observed in LPTC electrophysiology data from Egelhaaf and

Borst (1989). For this reason, further downstream in the EMD model at the T5

level, the “dirty multiplication” used in Higgins et al. (2004) to represent the T5

cell shunting inhibitory synapse is replaced by the model for synaptic interaction

outlined in Koch (1999) to reflect the real biophysics of cells. This implementation

is essential for producing simulated LPTC responses with saturating behavior of a

close match to those from Egelhaaf and Borst (1989). This interaction between an

excitatory synapse and an inhibitory synapse in a passive dendritic tree is described

by Equation 3.2:

Vs =
geEe

(
K̃es + giK̃

+
e

)
+ giEi

(
K̃is + geK̃

+
i

)
1 + geK̃ee + giK̃ii + gegiK̃∗

(3.2)

with

K̃+
i = K̃isK̃ee − K̃esK̃ie
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Photoreceptor Inputs

Gaussian Spatial Filter 1

x x x x

� � � �
+ + + +

Gaussian Spatial Filter 2

Center-Surround Spatial Filter

Weight

Figure 3.1: Operation of the center-surround spatial filter. This filter computes the
difference between two Gaussian filters of different widths. The value of the weight
parameter can be adjusted between 0 and 1 to control the amount of spatial mean
luminance in the motion pathway. When the weight is equal to 1, the subtraction
between the two Gaussian filters eliminates all the spatial mean luminance in the
input signals. Smaller values of the weight allow the preservation of more spatial
mean luminance in the inputs.
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K̃+
e = K̃esK̃ii − K̃isK̃ie

K̃∗ = K̃eeK̃ii − K̃2
ie

where Em and gm denote the potential and the conductance of the input, respec-

tively, at location m, K̃mn denotes the transfer resistance between location m and n,

and the subscripts e, i, and s respectively denote the excitatory and inhibitory input

locations, and the soma location. Equation 3.2 not only accounts for the biophysics

of shunting inhibition but is also able to produce the nonlinearity of contrast satu-

ration explained in Section 2.4.2, without the explicit use of the saturating elements

as done in the elaborated neuronally-based EMD model.

To summarize, in our revised EMD model shown in Figure 3.2 the saturating

elements (‘S’ blocks) are removed, the center-surround spatial band-pass filters are

added to the AM cell and the L2 cell pathways, and the shunting inhibition at the

T5 level is replaced with the biophysical implementation.

3.1 Methods

All experiments from this section were carried out using the revised EMD model

shown in Figure 3.2, which includes the center-surround spatial filtering (Equa-

tion 3.1), the frequency-dependent synaptic depression at the TM1 level (Equa-

tion 2.5) and the pattern size saturation at the LPTC level (Equation 2.4) imple-

mented by Rivera-Alvidrez (2005), and the biophysical shunting inhibition function

(Equation 3.2). All temporal filter parameters remained the same as those used in

Higgins et al. (2004), except for the low-pass filter immediately following the ‘A’

block whose time constant has been empirically adjusted to 0.097 s.

In our current model, the reduction in contrast sensitivity was quantitatively

matched to that observed in real LPTCs by Harris et al. (2000) by empirically ad-

justing the w parameter (amount of DC attenuation in Equation 3.1) in the center-

surround spatial filter and the τd parameter (time constant of recovery in Equa-
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Figure 3.2: The one-dimensional revised neuronally based model of elementary mo-
tion detection. This model differs from the one shown in Figure 2.9 in a number of
ways. (1) The center-surround spatial filters (refer to Figure 3.1 for details) were
implemented at the AM and L2 cell level to eliminate the spatial mean luminance
in the input signals. (2) The shunting inhibition at the T5 level was replaced with
a biophysical implementation outlined in Koch (1999). (3) The sigmoid functions
denoted by ‘S’ blocks in the previous model were removed.
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tion 2.6) of the synaptic depression at the TM1 level. The value of w determined the

difference in the amount of contrast sensitivity reduction between motion-adapted

and flicker-adapted responses. The larger the value of w, the greater the removal

of the spatial mean component from the input signals, resulting in a smaller reduc-

tion in contrast sensitivity for flicker-adapted responses relative to motion-adapted

responses. The value of τd affected the amount of reduction in contrast sensitivity

for motion-adapted responses, with a larger value of τd producing a larger amount

of reduction in contrast sensitivity.

Within the center-surround spatial filter (Equation 3.1), the relative weight w

between these two filters has been empirically set to be 0.98, in order to produce

the desired amount of adaptation to flickering stimuli relative to the amount of

adaptation to motion stimuli (see Figure 3.7(a)). The first Gaussian filter g1 had

a σ1 of 13 pixel units while the second Gaussian filter g2 had a σ2 of 4 pixel units.

These two values were chosen to match the spatial tuning intrinsic to the EMD

model. The kernel size used for both filters was chosen to be 27 pixel units as the

minimum to avoid significant artifacts in the filters.

The mechanism accounting for contrast saturation was inherent in Equation 3.2,

and the amount of saturation could be adjusted by choosing a value for the Kee

parameter (the transfer resistance at the excitatory input) appropriately. A larger

value of Kee was used to produce a greater amount of saturation in the contrast-

response curve. In Equation 3.2, K̃es, K̃ee, K̃ei, K̃is, K̃ii, K̃ie, and Ee were each

empirically set to be 11 MΩ, 65 MΩ, 16 MΩ, 15 MΩ, 100 MΩ, 16 MΩ, and 0.5 arbi-

trary voltage units, respectively, to match electrophysiological data (Koch, 1999). Ei

was set to 0 for shunting inhibitory synapse. ge and gi were the rectified excitatory

input and the rectified inhibitory input, respectively. In the pattern size saturation

function (Equation 2.4), all the parameters remain the same as in Rivera-Alvidrez

(2005) except for Ei whose value was adjusted to -0.4.

As expected in a nonlinear system, small changes made to the model can dras-
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tically change its responses. To ensure that the basic electrophysiological char-

acteristics modeled by the previous version of the neuronally-based EMD model

(see Figure 2.7) were preserved, simulations of experiments from Franceschini et al.

(1989), Egelhaaf and Borst (1989), and Coombe et al. (1989) were performed. The

protocol used for these experiments were identical to those outlined in Higgins et al.

(2004).

All the simulations were performed using the Matlab package (The Mathworks,

Natick, MA). Each simulation consisted of a 100×100 pixel image (with a 100 Hz

frame rate) viewed by a 20×20 hexagonal array of photoreceptors. When generating

simulated H1 cell responses for comparison with data from Reisenman et al. (2003),

the test stimuli were (as in that paper) composed of square-wave moving gratings

with a fixed spatial frequency of 0.41 cycles/optic cartridge, a temporal frequency

ranging from 2 Hz to 16.7 Hz, and a pattern contrast between 11% and 95%. Each

experiment was repeated for 50 trials to reduce artifacts resulting from the initial

spatial phase of the test stimulus. In each trial a uniform stimulus at the mean

luminance was shown for 4 s followed by the presentation of the test stimulus for

3 s. Simulated LPTC responses were generated as in Higgins et al. (2004) (see

Figure 3.3).

When generating the contrast response curves for comparison with the HS cell

responses from Harris et al. (2000), sinusoidal moving gratings as in that paper

were used. For each simulation, a test stimulus with a spatial frequency of 0.37

cycles/optic cartridge and a temporal frequency of 5 Hz was presented for the first 1

s, which was followed by the presentation of an uniform stimulus for 500 ms. Then a

strongly adapting stimulus (with a high pattern contrast of 95%, a spatial frequency

of 0.37 cycle/optic cartridge, and a temporal frequency of 20 Hz) was applied for

4 s immediately followed by the test stimulus again for 1 s. The simulation was

repeated for 10 different test stimulus pattern contrasts between 0% and 100%. The

simulated mean LPTC response measured between 200 ms and 500 ms following the
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Figure 3.3: Integration of EMD model outputs of multiple optic cartridges into an
LPTC as presented in Higgins et al. (2004). In addition to the spatial summation of
multiple EMD outpus, the spontaneous firing rate (fspon) is added before the signal
is half-wave rectified (by the ‘POS’ operation), to produce the final LPTC output,
fout.
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onset of the test stimulus (before and after adaptation) was recorded for each trial.

A uniform stimulus was presented for at least 5 s between trials.

3.2 Results

Simulations of the Franceschini experiments have shown that our new model was

able to demonstrate the following characteristics observed from the H1 cell responses

in the same way as previous versions of the model. (1) When a single photoreceptor

was presented with a flashing stimulus, no significant response was observed at the

LPTC. (2) When two neighboring photoreceptors were each presented with a flash-

ing stimulus simultaneously, no significant response was observed at the LPTC. (3)

When two neighboring photoreceptors were each presented with a flashing stimulus

sequentially, the LPTC showed directional selectivity. (4) The firing rate of the H1

cell when plotted against the delay time between the sequential flashings of two

neighboring photoreceptors resembles the impulse response of a high-order low-pass

filter. (5) The firing rate of the H1 cell when plotted against the delay time between

the sequential sustained stimulations of two neighboring photoreceptors resembles

the step response of a high-pass filter. Simulations of experiments from Egelhaaf and

Borst (1989) have demonstrated that the tangential cell outputs oscillate at the tem-

poral frequency of the input sinusoidal moving gratings due to transient responses of

various temporal filters in the model. Lastly, when saltatory random gratings were

presented to the model as done in Coombe et al. (1989), weak direction-selective

responses were observed due to the relaxed high-pass filter implemented for the

amacrine-T1 synapse which allows the passage of sustained luminance components.

Results for all simulations described above were qualitatively comparable to those

in Higgins et al. (2004) and therefore not included in the thesis.

We next investigated the effect which the temporal frequency and the pattern

contrast of a motion stimulus had on the response of the simulated H1 cells in our

revised model. Figure 3.4b shows the simulated H1 cell responses when first adapted
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(a)

(b)

Figure 3.4: Adaptation during continuous preferred-direction motion stimulation.
(a) Recorded responses from H1 cells as presented in Reisenman et al. (2003), re-
produced without permission. (b) Simulated LPTC responses using the revised
neuronally based EMD model. In both (a) and (b), the visual stimuli composed
of 4 s of mean luminance and 3 s of a square-wave grating moving in the preferred
direction. Three temporal frequencies (2 Hz, 10 Hz, and 16.7 Hz) and three pat-
tern contrasts (11%, 19%, and 95%) were used. The results from (a) and (b) are
qualitatively similar.
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to 4 s of uniform stimulus before being presented with square-wave gratings moving

in the preferred direction. Three temporal frequencies (2 Hz, 10 Hz, and 16.7 Hz)

and three pattern contrasts (11%, 19%, and 95%) were used. Similar to experimen-

tal results from Reisenman et al. (2003), we made the following observations. (1) No

transient oscillations were observed at the onset of motion when mean luminance

instead of stationary grating was presented between trials, (2) the non-oscillatory

transient responses decayed faster as both the temporal frequency and the pat-

tern contrast increased, (3) optimal simulated H1 cell response was obtained at a

temporal frequency of 2 Hz independent for all pattern contrast levels. When the

depression gain factor D from the ‘A’ blocks in the model was plotted against time

(Figure 3.5), we noticed a faster rate of adaptation as the temporal frequency and

the pattern contrast of the test stimulus increased, reflecting the increase in tran-

sient response decay rate observed in the H1 cell recordings, allowing the simulated

H1 cells to reach a steady-state level more rapidly. We further tested the simulated

H1 responses to test stimuli moving in the anti-preferred direction under the same

protocol used for preferred-direction motion stimulation. The results are presented

in Figure 3.6b and they exhibited all the same characteristics previously outlined for

responses to preferred-direction motion. One thing worth noting was the presence

of hyperpolarizing after-responses upon the cessation of the motion stimulus in the

preferred direction, which was most notable in the case with a temporal frequency

of 16.7 Hz and a pattern contrast of 0.11% (bottom-left window in Figure 3.4b).

However, very little or no after-responses were observed upon the cessation of the

motion stimulus in the anti-preferred direction. These findings were consistent with

observations of LPTCs by Harris et al. (2000) and Kurtz et al. (2000).

Lastly, we investigated the effects of adaptation with motion in the preferred di-

rection, motion in the anti-preferred direction, motion in the orthogonal direction,

and wide-field flicker. Figure 3.7(a) shows the simulated HS cell responses to test

stimuli of a range of pattern contrasts, before and after adaptation to motion in
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Figure 3.5: Depression gain factorD(t) during continuous preferred-direction motion
stimulation. The same stimulus protocol from Figure 3.4 was used. When the
temporal frequency and the pattern contrast of the test stimulus increased, the rate
of adaptation of the depression gain factor increased as well, allowing the cell to
reach steady-state level quickly.
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(a)

(b)

Figure 3.6: Adaptation during continuous anti-preferred-direction motion stimula-
tion. (a) Recorded responses from H1 cells as presented in Reisenman et al. (2003),
reproduced without permission. (b) Simulated LPTC responses using the revised
neuronally based EMD model. In both (a) and (b), the visual stimuli composed of
4 s of mean luminance and 3 s of a square-wave grating moving in the anti-preferred
direction. Three temporal frequencies (2 Hz, 10 Hz, and 16.7 Hz) and three pat-
tern contrasts (11%, 19%, and 95%) were used. The results from (a) and (b) are
qualitatively similar.
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(a)

(b)

Figure 3.7: Simulated LPTC responses from adaptation to motion versus adaptation
to flicker and protocol for calculating the contrast sensitivity of the simulated LPTC
cell. (a) The preferred-direction motion adaptation produced approximately a 3.5-
fold reduction in contrast sensitivity (∆CSgain,10% = 3.48 and ∆CSgain,50% = 3.51)
while the wide-field flicker produced approximately a 1.5-fold reduction in contrast
sensitivity. (b) At a given criterion level (e.g. 10% or 50% of the maximum cell
response), the pattern contrasts required to elicit this criterion response before and
after the presentation of an adapting stimulus are denoted by Cunadapted and Cadapted,
respectively. The reduction in contrast sensitivity of the LPTC response is calculated
by taking the ratio of Cadapted to Cunadapted. Note that we are looking at only the
changes resulting from the reduction in contrast gain, out of three motion adaptation
features presented in Section 2.4.



55

the preferred direction and adaptation to wide-field flicker. As done in Harris et al.

(2000), we evaluated the contrast that was required to elicit the 10% and 50% crite-

rion response levels for each contrast-response curve, and determined the reduction

in contrast sensitivity for each form of adaptation as illustrated in Figure 3.7(b). We

found that the preferred-direction motion adaptation produced approximately a 3.5-

fold reduction in contrast sensitivity (∆CSgain,10% = 3.48 and ∆CSgain,50% = 3.51)

while the wide-field flicker produced approximately a 1.5-fold reduction in contrast

sensitivity. These values have been tuned using the parameter w in Equation 3.1

to match closely with the results from recorded electrophysiological data when the

effect of the afterpotential was removed. The simulated mean LPTC response was

determined between 200 ms and 500 ms following the onset of the test stimulus

(before and after adaptation). Figure 3.8(a) shows the comparison between the

contrast-response curves from adaptation with motion in the preferred direction and

adaptation with motion in the anti-preferred direction. Motion in the anti-preferred

direction induced a 3.5-fold reduction in contrast sensitivity (∆CSgain,10% = 3.49

and ∆CSgain,50% = 3.50), comparable to the effect from adaptation to motion in the

preferred direction. Consistent with results from Harris et al. (2000), adaptation

to motion on average yielded a 3.5-fold reduction in contrast sensitivity regardless of

the direction of motion. We further tested this by looking at the effect of adaptation

to motion in the orthogonal direction (Figure 3.8b). We found that adaptation to

motion in the orthogonal direction yielded a 3.53-fold reduction in contrast sensi-

tivity (∆CSgain,10% = 3.55 and ∆CSgain,50% = 3.51), which was slightly more than

the effect of adaptation to preferred-direction motion. This has also been previously

observed in HS cell recordings by Harris et al. (2000).

3.3 Summary and Discussion

In this revised neuronally based EMD model (Figure 3.2) two modifications were

made to the elaborated neuronally based model by Rivera-Alvidrez (2005). First, a
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(a)

(b)

Figure 3.8: Simulated LPTC responses from adaptation to motion in the anti-
preferred direction and from adaptation to motion in the orthogonal direction. (a)
Motion in the anti-preferred direction induced a 3.5-fold reduction in contrast sensi-
tivity (∆CSgain,10% = 3.49 and ∆CSgain,50% = 3.50), same as the effect from adapta-
tion to motion in the preferred direction. (b) Adaptation to motion in the orthogonal
direction yielded a 3.53-fold reduction in contrast sensitivity (∆CSgain,10% = 3.55
and ∆CSgain,50% = 3.51), slightly more than the effect of adaptation to preferred-
direction motion. The simulated mean LPTC response was determined between 200
ms and 500 ms following the onset of the test stimulus (before and after adaptation)
for both (a) and (b).
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center-surround spatial filter was incorporated at the AM and L2 cell level to mimic

the interaction between the AM1 cell and the AM2 cell networks, as well as the

connections between the photoreceptor cells, the L2 cells, and the AM cells. Second,

the computation of the shunting inhibition at the T5 level was revised to reflect the

biophysics of synaptic processes between cells. The simulated cell responses from

the model were able to match all the physiological cell responses exhibited by the

two previous versions of the neuronally based EMD models.

The implementation of the center-surround spatial filter preserved motion in-

formation in the input signals while removing the majority of the spatial mean

luminance from flickering stimuli. This allowed the model to produce simulated

LPTC responses that reflect the motion adaptation characteristics not exhibited

by the two previous neuronally based models. The most notable difference is the

reduction in contrast sensitivity between the responses of a simulated LPTC cell

after adaptation to motion stimuli and after adaptation to flickering stimuli. In

Rivera-Alvidrez (2005) adaptation to motion stimuli and adaptation to flickering

stimuli produced almost the same amount of reduction in contrast sensitivity. Our

current model demonstrated that adaptation to motion stimuli produced approx-

imately a 3.5-fold reduction in contrast sensitivity, while adaptation to wide-field

flicker produced approximately only a 1.5-fold reduction. Furthermore, the current

model was also able to show that adaptation to motion in any direction, including

the anti-preferred and the orthogonal directions, elicited simulated LPTC responses

with comparable, even identical, amounts of reduction in contrast sensitivity as ob-

served by Harris et al. (2000) in real LPTC responses. By using the biophysical

computation to represent the shunting inhibition taking place at the T5 cell level,

the sigmoid function previously used in Rivera-Alvidrez (2005) to model contrast

saturation could be eliminated.

Both the implementations of the center-surround spatial filter and the biophys-

ical shunting computation contributed to making a more realistic neuronally based
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EMD model, as well as producing simulated LPTC outputs that exhibited motion

adaptation responses which are a closer match to those observed in real LPTCs.

The work described in this chapter has been prepared into a draft manuscript

for journal publication. This manuscript can be found in Appendix A.



59

CHAPTER 4

Optics and Photoreceptor Modeling

Previous neuronally-based EMD models sampled and inserted light information di-

rectly at the level of photoreceptor cell outputs, neglecting possible pre-processing

of light information taking place at the optics level and the photoreceptor level. In

this thesis we describe the additions of two newer stages – the optics of the com-

pound eye and the photoreceptor model – to the revised neuronally-based EMD

model from Chapter 3 for a more complete and realistic model of the insect visual

pathway.

Features of the compound eye optics are important for navigational tasks in a

real-world environment. The acute zones (see Section 2.2.1) allow for higher visual

acuity when viewing fast-moving objects, which is important for target tracking

behaviors such as foraging. The lateral regions of the compound eye with rela-

tively sparse ommatidial distribution are more tuned to objects moving at lower

speeds, essential for stabilization against the moving background during flight. We

constructed a realistic three-dimensional compound eye using geometrical data mea-

sured from a blowfly in previous studies (Petrowitz et al., 2000). We also imple-

mented the Gaussian blurring which results from the interaction between light and

the optical structure of the lenses on the compound eye.

The pre-processed light information from the optics stage is relayed to the next

stage: the photoreceptor model. We based our photoreceptor implementation on

the work of van Hateren and Snippe (2001). Their model is shown in Figure 4.1 and

consists of two divisive feedback loops and a static nonlinearity. The first divisive

feedback loop is referred to as the De Vries-Rose model and exhibits steady-state

input-output behavior such that the output is the square-root of the input. It
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Figure 4.1: Photoreceptor model from van Hateren and Snippe (2001). This model
consists of two divisive feedback loops and a static nonlinearity, referred to as the
De Vries-Rose model, the Weber Law model, and the Naka-Rushton equation, re-
spectively. The three modules work together to compress large transients in the
input stimulus into the dynamic range of the photoreceptor cells. f(t) and p(t)
respectively denote the input and the output of the model.

produces overshoots and undershoots during increments and decrements of light

intensity, respectively, as a result of the presence of the low-pass filter. The second

divisive feedback loop is referred to as the Weber Law model (Dehaene, 2003) and

exhibits steady-state input-output behavior such that the output is the logarithm of

the input. When presented with light intensity steps, the output of this loop shows

a slow decrease in response following a fast transient response. The last component

of this photoreceptor model is implemented as a Naka-Rushton equation (Naka and

Rushton, 1966):

o =
i

(1 + i)
(4.1)

where i and o respectively denote the input and the output of this component of

the model. This nonlinearity is used to compress any remaining responses that are

outside of the dynamic range of the photoreceptors.
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Figure 4.2: Reconstructed three-dimensional compound eyes of a female Calliphora.
The azimuth and elevation angles recorded by Petrowitz et al. (2000) are used to
plot the location of each ommatidium on two spheres of a radius of 5 mm. Each
ommatidium is represented by a dot in the image. The left and the right compound
eyes are mirror images of each other.

4.1 Methods

An image containing measured optical axes of ommatidia on the compound eye of

female house fly Calliphora was obtained from Petrowitz et al. (2000). A program

was written in Matlab (The Mathworks, Natick, MA) to extract and store the az-

imuth and elevation angles of each optical axis plotted on this map. We also defined

the radius of the compound eye to be 5 mm and generated the Cartesian coordi-

nates to represent the locations of the ommatidia. This information was used to

re-construct a three-dimensional compound eye with realistic ommatidial distribu-

tion (Figure 4.2). For each ommatidium we identified its six nearest neighboring

ommatidia (Figure 4.3), whose input signals would later be used for motion compu-

tation within the EMD model.

When presenting a visual stimulus, we positioned the stimulus such that the
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Figure 4.3: Locating the nearest six neighboring ommatidia for each individual
ommatidium on the compound eye. This image demonstrates how the Matlab code
written was able to locate the six neighboring ommatidia and their relative positions
to each center ommatidium. The operation was performed on all 2386 ommatidia of
a single compound eye. In each group of seven ommatidia, the center one is denoted
by a cross (+), the upper-left neighbor is denoted by an asterisk (∗), the upper-right
neighbor is denoted by a square (�), the right neighbor is denoted by a diamond
(♦), the lower-right neighbor is denoted by a triangle (5), the lower-left neighbor
is denoted by a star (?), and the left neighbor is denoted by an ‘×’.
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Figure 4.4: Virtual setup of the three-dimensional compound eye and the visual
stimulus. The center of the visual image, (xc,2d, yc,2d), is aligned with the optical
axis on the three-dimensional compound eye model with an azimuth angle and an
elevation angle of 0◦ (i.e. the z-axis in this setup). The projected two-dimensional
location on the visual image being sampled by the ommatidium denoted by ‘∗’
(three-dimensional coordinate (xi,3d, yi,3d, zi,3d)) is marked by an × (two-dimensional
coordinate (xi,2d, yi,2d)). r is the radius of the eye, d is the distance of the visual image
from the eye, θ and φ are the elevation angle and the azimuth angle representing
the ommatidium ‘∗’, respectively.



64

center of the image was aligned with the optical axis of the three-dimensional com-

pound eye model with an azimuth angle and an elevation angle of 0◦ (Figure 4.4).

To determine the two-dimensional location on the visual image being sampled by

each ommatidium we derived Equation 4.2:xi,2d = xc,2d +
d·xi,3d
zi,3d

yi,2d = yc,2d +
d·yi,3d
zi,3d

(4.2)

where (xi,2d, yi,2d) is the two-dimensional location on the visual image being sampled

by the ith ommatidium, (xc,2d, yc,2d) is the location of the center of the image, d

(set to be 8 cm in the simulations) is the distance of the two-dimensional visual

image from the three-dimensional compound eye, and (xi,3d, yi,3d, zi,3d) is the three-

dimensional location of the ith ommatidium.

We next modeled the Gaussian blurring effect inherent in the optics of the fly

compound eye. At the output of the optics stage, the signal at each ommatidial

location represents the average of the local signal and the weighted signals from all

neighboring ommatidia within a range programmed to enclose approximately five

layers of neighbors. For each ommatidium there were ni neighboring ommatidia

being enclosed in the pre-defined area on the compound eye. The signal fi from the

ith ommaditium at the output of the optics stage was computed using Equation 4.3

which represents a Gaussian function:

fi =
1

(1 + ni)
×

[
si +

ni∑
j=1

sj × e
(xi,2d−xij,2d)

2+(yi,2d−yij,2d)
2

2σ2

]
(4.3)

where si is the sampled signal by the ith ommaditium, (xij,2d, yij,2d) is the location on

the visual image sampled by the jth neighboring ommatidium of the ith ommatidium,

and σ is the standard deviation of the Gaussian distribution.

The photoreceptor stage was modeled based on the implementation by van

Hateren and Snippe (2001) with the following parameters from Higgins (2011). LP1

was set as a third-order low-pass filter with τ1 = 0.5 ms. In the De Vries-Rose model
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LP2 was set to be a first-order low-pass filter with τ2 = 0.4 s. In the Weber Law

model, LP3 was set as a first-order low-pass filter with τ3 = 10 s and the input-

output behavior of the exponential block was set as o = 3.7ei. Lastly the 1 in the

Naka-Rushton equation (Equation 4.1) was replaced with a 0.75.

All the simulations were carried out using the revised EMD model from Chapter 3

with the addition of the optics stage and the photoreceptor stage. The simulated T5

cell responses were compared to and contrasted against those from the revised EMD

model without the optics stage and the photoreceptor stage. The drifting sinusoidal

grating stimulus used in all the simulations is described by Equation 4.4:

I(x, y, t) = B (1 + C · sin(wt · t+ ws · s+ φ)) (4.4)

where B is the background luminance, C is the pattern contrast, wt is the temporal

frequency, ws is the spatial frequency, and φ is the initial phase.

4.2 Results

The revised EMD model with the optics/photoreceptor addition was presented with

a moving sinusoidal grating that moved in the preferred direction for 2.5 s before

changing to the anti-preferred direction for 2.5 s. B, C, wt, ws, and φ of the stimulus

were each set to 0.5 unit, 50%, 15 Hz, 0.225 cycles/optic cartridge, and 0 radians,

respectively. This stimulus as viewed by an arbitrarily chosen visual sampling unit is

shown in the upper-right panel of Figure 4.5(a). After being processed by the optics

stage and the photoreceptor stage, the amplitude of this stimulus was drastically

reduced from 0.5 unit to 0.04 unit (upper-left panel). Additionally, the resulting

simulated T5 cell response (lower-left panel) was found to be more directionally-

sensitive, as evident in the greater difference observed between the mean T5 cell

response to motion in opposite directions, compared to the response elicited by

the model without the optics/photoreceptor addition (lower-right panel). Similar

observations were made when a moving square-wave grating was used as a test
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stimulus (Figure 4.5b).

Next, the background luminance B of the visual stimulus was varied over five

orders of magnitude between 0.5 units and 5×103 units. As shown in Figure 4.6, the

background luminance of a sinusoidal moving grating was 0.5 units for the first 3 s,

then was increased to 50 units for 3 s, before being increased again to 5× 103 units.

The sinusoidal grating moved in the preferred direction for 1 s before changing to

the anti-preferred direction for 1 s. Regardless of how big the background luminance

was, the photoreceptor stage was able to compress all of the input signals into an

amplitude between 0 and 1 unit.

Finally, we looked at the simulated T5 cell responses when our current model

was subject to a visual stimulus with a very high or a very low background lumi-

nance. Figure 4.7(a) shows the simulated T5 cell response of both the current model

with (lower-left panel) and without the optics and photoreceptor stage (lower-right

panel), to a visual stimulus with a pattern contrast of 50% and a background lu-

minance of 5 × 104 units. The sinusoidal grating moved in the preferred direction

for 2.5 s before changing to the anti-preferred direction for 2.5 s. It was observed

that without the proper signal compression from the optics and photoreceptor stage,

propagation of large signals within the EMD model resulted in undesirable artifacts

evident in the flat-lining of the simulated T5 cell response (lower-right panel of Fig-

ure 4.7(a)). The artifacts were found to originate from the ‘A’ blocks which model

the frequency-dependent synaptic depression at the TM1 cell level. Since the op-

eration of this synaptic depression uses the absolute values of the input signals for

amplitude reduction, the speed of adaptation (i.e. amplitude reduction) increases

drastically when the values of the inputs are very large.

Figure 4.7(b) shows the simulated T5 cell response of both the current model

with (lower-left panel) and without the optics and photoreceptor stage (lower-right

panel), to a visual stimulus with a pattern contrast of 50% and a background lumi-

nance of 5× 10−3 units. The sinusoidal grating moved in the preferred direction for
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(a)

(b)

Figure 4.5: Simulated T5 cell responses of the revised EMD model with and without
the optics and photoreceptor stage. (a) After being processed by the optics stage
and the photoreceptor stage, the amplitude of a moving sinusoidal grating was
drastically reduced (upper-left panel) and the directional selectivity of the simulated
T5 cell response was enhanced (lower-left panel) compared that of the model without
the optics and photoreceptor model (lower-right panel). (b) Similar results were
obtained when a moving square-wave grating was used as a visual stimulus.
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Figure 4.6: Photoreceptor cell responses to visual stimulus with changing back-
ground luminance. The background luminance of a sinusoidal moving grating was
0.5 unit for the first 3 s, then was increased to 50 units for 3 s, before being increased
again to 5 × 103 units. The photoreceptor stage was able to compress signals with
large amplitudes into an amplitude of 0 to 1, while preserving the transient infor-
mation.

2.5 s before changing to the anti-preferred direction for 2.5 s. The model without

the optics and photoreceptor stage was found to produce simulated T5 cell responses

that started to lose directional selectivity as the input signals became very small.

The very same effect was observed from the model with the optics and photoreceptor

stage, however with more deterioration.

When visual stimuli of a background luminance in the range of 5×10−3 and 5×104

were presented, both the model with and without the optics and photoreceptor

stage performed well. Both exhibited directional selectivity similar to that shown in

Figure 4.5, with the former showing a greater difference between the mean T5 cell

response to motion in opposite directions.

4.3 Summary and Discussion

The previous neuronally-based model assumed a uniform field of view, such that

every region in the visual field was viewed by the same number of sampling units (i.e.

ommatidia). Through the implementation of the realistic ommatidial distribution in

this section, each area on the compound eye was populated with different densities
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(a)

(b)

Figure 4.7: Simulated T5 cell responses to a moving sinusoidal grating with high
background luminance and with low background luminance. (a) When a stimulus
with a high background luminance of 5 × 104 units was used, the model with the
optics and photoreceptor stage was still fully functional (lower-left panel) as a result
of proper signal compression (upper-left panel), while the model without the optics
and photoreceptor stage encountered undesirable artifacts evident in the flat-lining
of the simulated T5 cell response (lower-right panel). (b) When a stimulus with
a low background luminance of 5 × 10−3 units was used, the further compression
of an already small signal (upper-left panel) from the photoreceptor model resulted
in deterioration of the simulated T5 response observed at the output of the model
with the optics and photoreceptor model (lower-left panel), while the model without
the optics and photoreceptor stage fared better even though it did start losing its
directional selectivity (lower-right panel).
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of ommatidia depending on the type of visual stimulus it is specialized to view. As

discussed in Section 2.2.1, the frontal area is specialized for accurately tracking small

targets, and therefore requires the use of more sampling units. On the other hand,

the lateral regions are more loosely populated with sampling units in comparison,

because the motion of the background experienced during forward flight is generally

of less importance. The use of a non-uniform ommatidial distribution allowed a

smaller number of pixels to be used in regions outside of the acute zone, therefore

lowering the computational burden imposed on the EMD model. Although the true

advantages of using a realistic compound eye model were not demonstrated in this

thesis, the eye model will be extremely useful for future work with simulations in a

closed-loop environment.

The photoreceptor stage was able to reduce the amplitude of the input signals, as

is evident from Figures 4.5 to 4.7. The logarithmic function in the Weber Law model

reduced the effect of the changing background luminance and coded for the pattern

contrast of the visual stimulus. This pre-processing of the input signals allowed the

EMD model to perform optimally even when presented with background luminance

over a wide range of values as shown in Figure 4.6, by compressing the input signals

into a realistic range of cellular potentials exhibited by neurons. Nevertheless, a

disadvantage of the photoreceptor model was evident when visual stimuli of low

background luminance were used. Since even small signals that might already be

in the dynamic range of the photoreceptor cells are further compressed regardless

of their size, small input signals can become miniscule after being processed by the

photoreceptor model. This can cause deterioration of the EMD model output as

evident in Figure 4.7(b).
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CHAPTER 5

Summary and Future Work

In this thesis, three additions were incorporated into the elaborated neuronally-

based motion-detecting model by Rivera-Alvidrez (2005). The implementation of

the center-surround spatial filters and the biophysical shunting inhibition function

described in Chapter 3 allowed the model to produce simulated LPTC responses

that exhibit motion adaptation characteristics which are a closer match to recorded

LPTC data compared to the previous two versions of the neuronally-based model.

Our current model demonstrated that adaptation to motion stimuli produced a

significantly greater reduction in contrast sensitivity, compared with adaptation to

wide-field flicker. In addition it also showed that adaptation to motion in any direc-

tion, including the anti-preferred and the orthogonal directions, elicited simulated

LPTC responses with comparable, even identical, amounts of reduction in contrast

sensitivity as observed by Harris et al. (2000) in real LPTC responses.

The implementation of the optics and photoreceptor stage emulated how light

information is processed in a real compound eye. The realistic ommatidial distri-

bution reflected the specialization of each area of the eye to view different types of

visual stimuli. The frontal area is populated with more sampling units for accurate

tracking of small targets, while the lateral regions are more loosely populated for

viewing motion of the background experienced during forward flight. The photore-

ceptor model compressed the input signals into a realistic range of cellular potentials

exhibited by neurons, which allowed the EMD model to perform well even when pre-

sented with background luminance over a wide range of values.
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5.1 Future Work

The amount of saturation observed in the contrast response curves in Chapter 3 did

not quite match that from Harris et al. (2000), even when the biophysical shunting

inhibition is implemented in place of the sigmoid function. Future work might in-

clude a closer examination at the neuronally-based model to locate a physiologically

sound site to implement computational modules that will achieve this.

Additionally, due to time constraints, we were not able to fully explore the advan-

tages of the optics stage implementation or the photoreceptor model in Chapter 4.

Future work may include the use of more realistic visual stimuli as seen by a fly and

the use of a closed-loop simulation environment.

5.2 Contributions of the Author

The formulation of the center-surround spatial filter was performed by the author

in collaboration with Dr. Charles M. Higgins. The implementation of the center-

surround spatial filters into the EMD model and subsequent simulations were carried

out by the author. The Matlab code for biophysical shunting inhibition was devloped

by Lise Johnson, and later tuned and implemented in the EMD model by the author.

The incorporation of the realistic compound eye model was performed by the

author of this thesis, including all Matlab coding, simulations, and mathematical

derivations, using data from Petrowitz et al. (2000) kindly provided by Dr. Holger

G. Krapp. The photoreceptor model was implemented by the author using the

mathematical model from van Hateren and Snippe (2001), with the assistance of

Dr. Charles M. Higgins in tuning the model parameters.
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Strausfeld, N. and D. Nässel (1981). Neuroarchitectures serving compound eyes of
Crustacea and insects. In Handbook of sensory physiology, pp. 1–132. Springer.

Strausfeld, N. J. (1976). Atlas of an Insect Brain. Springer. ISBN 0387073434.

Strausfeld, N. J. and J. K. Lee (1991). Neuronal basis for parallel visual processing
in the fly. Visual Neuroscience, 7(1-2), pp. 13–33. ISSN 0952-5238.



79

Tix, S., E. Eule, K. Fischbach, and S. Benzer (1997). Glia in the chiasms and
medulla of the Drosophila melanogaster optic lobes. Cell and Tissue Research,
289(3), pp. 397–409.

Tomasi, C. and T. Kanade (1991). Detection and Tracking of Point Features. In-
ternational Journal of Computer Vision, 9, pp. 137—154.

Tootell, R. B. H., J. B. Reppas, A. M. Dale, R. B. Look, M. I. Sereno, R. Malach,
T. J. Brady, and B. R. Rosen (1995). Visual motion aftereffect in human cortical
area MT revealed by functional magnetic resonance imaging. Nature, 375(6527),
pp. 139–141.

van Hateren, J. H. and H. P. Snippe (2001). Information theoretical evaluation of
parametric models of gain control in blowfly photoreceptor cells. Vision Research,
41, pp. 1851–1865.

van Santen, J. P. H. and G. Sperling (1984). Temporal covariance model of human
motion perception. Journal of the Optical Society of America A, 1(5), pp. 451–
473.

van Santen, J. P. H. and G. Sperling (1985). Elaborated Reichardt detectors. Journal
of the Optical Society of America A, 2(2), pp. 300–320.

Yamaguchi, S., R. Wolf, C. Desplan, and M. Heisenberg (2008). Motion vision
is independent of color in Drosophila. Proceedings of the National Academy of
Sciences, 105(12), pp. 4910–4915. ISSN 0027-8424.



80

APPENDIX A

A Neuronally-Based Model of Contrast Gain Adaptation in Fly Motion Vision.

Zuley Rivera-Alvidrez, Ichi Lin and Charles M. Higgins

In preparation for submission to

Visual Neuroscience


	LIST OF FIGURES
	ABSTRACT
	CHAPTER Introduction
	Motivation
	Guide to Thesis
	Summary

	CHAPTER Background
	Models of Motion Detection
	Feature-Based Schemes 
	Gradient-Based Schemes
	Correlation-based Schemes

	Optics and Anatomy of the Insect Visual Pathway
	Optics
	Photoreceptors
	Neural Superposition
	Visual Neurons in the Optic Lobe

	Neuronally Based Model
	Motion Adaptation
	Afterpotential
	Reduction in Output Range
	Reduction in Contrast Gain

	Elaborated Neuronally Based Elementary Motion Detector Model

	CHAPTER An Improved Model of Contrast Gain Adaptation 
	Methods
	Results
	Summary and Discussion

	CHAPTER Optics and Photoreceptor Modeling
	Methods
	Results
	Summary and Discussion

	CHAPTER Summary and Future Work
	Future Work
	Contributions of the Author

	REFERENCES
	APPENDIX A Neuronally-Based Model of Contrast Gain Adaptation in Fly Motion Vision.

