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ABSTRACT

A terrestrial robotic electrophysiology platform has been developed that can hold

a moth (Manduca sexta), record signals from its brain or muscles, and use these

signals to control the rotation of the robot. All signal processing (electrophysiology,

spike detection, and robotic control) was performed onboard the robot with custom

designed electronic circuits. Wireless telemetry allowed remote communication with

the robot. In this study, we interfaced directionally-sensitive visual neurons and

pleurodorsal steering muscles of the mesothorax with the robot and used the spike

rate of these signals to control its rotation, thereby emulating the classical optomotor

response known from studies of the fly visual system. The interfacing of insect

and machine can contribute to our understanding of the neurobiological processes

underlying behavior and also suggest promising advancements in biosensors and

human brain-machine interfaces.
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CHAPTER 1

Introduction

This dissertation describes a system developed to interface an insect and a machine,

such that bioelectric signals from the insect are interpreted by a central processing

unit and used to control a terrestrial robot. The insect chosen for this study was

the large hawkmoth Manduca sexta. Its large size (up to 2.75 inches in length)

and well-mapped neural and flight muscle system makes it an excellent candidate

for electrophysiological studies of the brain or muscle, or both. Our system was

developed to be controlled by either responses from one or more neurons (via an ex-

tracellular tungsten electrode) or a muscle (via a thin copper wire electrode). The

robot carried an electrophysiology printed circuit board (PCB) with three extra-

cellular amplifier channels and a microcontroller. This system was able to detect

spikes, calculate the spike rate of bioelectric signals and send binary commands to

the robot. The moth-machine hybrid was largely developed and tested in a cylindri-

cal arena of similar nature to those used for classical insect optokinetic studies. The

novelty of this system is its potential use for closed-loop studies of neural systems

while also providing mechanosensory feedback related to turning. Projected as an

application in the future design of robotics, the present system contributes to the
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area of study of biosensors and brain-machine interfacing.

1.1 Biology and Control Theory

Brains remain the most complex, and least understood, computing systems. The

most complex of brains, that of ourselves, underlies personalities, behaviors,

thoughts, memories and social interactions. Yet, because of ethical limitations it is

essentially off limits for experimental manipulation. Also, its enormous complexity

raises numerous challenges to our understanding: from relatively simple sensorimo-

tor integrative functions to the most complex functions of memory and intellect.

In order to better understand the general mechanisms that apply to brains, both

human and animal, we are obliged to use non-human model systems. This is on the

assumption that there has been one evolutionary origin of all nervous systems, im-

plying commonalities of neuronal function across animal phyla (Denes et al., 2007).

Invasive experiments, such as those that penetrate the brain to record electrical

and/or chemical signals, cannot of course be performed in humans. However, these

types of experiments are important because insights gained from these can help

explain the mechanisms that control psychophysical behaviors. Our understanding

of how nerve cells and nervous systems work are based on knowledge gained from

such invasive experiments. Studies using animal model systems can contribute to

therapies for human diseases in cases where neuronal mechanisms are dysfunctional.
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In the field of neuroethology, which is a discipline of neuroscience, the ultimate

goal is to understand the neural basis that underlies the generation and control of

behaviors, ranging from sensory perception and central processing, to motor out-

puts. Investigations in this field usually are based on identifiable, quantifiable and

stereotypical behaviors displayed by an animal. To investigate these neural mecha-

nisms, one can either begin by looking at the neuroanatomy and physiology to infer

how the neuronal architecture might lead to behaviors or one can design behavioral

experiments that can be used to infer qualities of the neural pathways without actu-

ally resolving them as structures. However, the most informative methods employ

a combination of anatomical, behavioral, electrophysiological, pharmacological or

ablation techniques (including genetic modifications of brains or neurons in animals

amenable to these approaches).

Needless to say, even those experiments that attempt to combine any of these

techniques are likely to be limited. For example, a trivial phenomenon such as

mechanical vibrations can present huge challenges in electrophysiological record-

ing. This is because intra- and extracellular recordings are sensitive to vibrations

and most preparations require the experimental animal to be fixed in place, semi-

mobile and constrained on an anti-vibration table. Although such preparations

usually do not interfere with primary sensory areas, and are therefore suited for

single cell studies of primary sensory systems, they leave much to be desired when
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it comes to relating the responses of single neurons to a natural behavior, even at

the level of multijoint movement. Few behaviors remain intact under such con-

strained conditions, an example being the jamming avoidance responses of electric

fish (Heiligenberg, 1991). In general, physical restriction of the animal preparation

will present problems, because the animal and its sensory neurons may respond to

stimuli differently than they would in the unconstrained animal (Hitschfeld et al.,

2009).

As an animal navigates in an environment, its behavior is controlled and coor-

dinated by sensory-motor loops between the perception of stimuli, their processing

by the central nervous system (including integration of the ambient context of envi-

ronmental conditions and previous experience), the execution of motor actions, and

sensory feedback to the brain about those actions. While empirical models based

on experimental data are a useful basis for investigations of neural information cas-

cades, mathematical models require precise identification and rigorous definition of

vague concepts and can therefore lead to an understanding of the dynamics of the

neural system in question. A subfield of engineering that can be usefully applied

for creating models of neural sensory motor loops is called Control Theory. Con-

trol Theory has a framework for approaching problems that break complex systems

into individual components, including feedback, and analyzing how these affect the

dynamics of the system as a whole (Kuo, 1991).
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At its most rudimentary level, Control Theory begins with conceptualizing a

system as a black box with inputs and outputs. The types of inputs the system

responds to and the form of the outputs it generates are directly related to what

is inside the black box. To get a basic understanding of what is inside this black

box, one can first investigate the response of the system to changing conditions (also

known as transient analysis) and constant conditions (also known at the steady-state

response; Kuo, 1991). When the input to the system is suddenly changed from one

state to another, the output will also change over a transitory time-period before

settling to a steady response pattern. Given a single system, one can begin to imag-

ine that many systems can be linked, with the outputs of one system becoming the

inputs of others. Furthermore, information from one system can serve as feedback

to others. An entire system of interconnected components can be modeled given

knowledge of the individual parts.

Phenomenologically speaking, living organisms are also systems with inputs, out-

puts and many computational networks between. Organisms with visual, olfactory,

or other sensory systems receive input from their environment and form internal

representations of their world. Any sort of action, for example a motor behavior,

that is released by these sensory inputs can be considered as a response to these

particular inputs and can thus serve to analyze the organism’s input-output rela-

tion. Everything that happens in the transformation between information from the
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physical environment into sensory percepts and the corresponding behavior is anal-

ogous to a black box in Control Theory. Perhaps at the highest level of the analysis

of biological systems are human psychophysical studies. In these studies, the inner

workings of the human brain are probed with controlled sensory inputs while the

participants are asked to respond according to what they perceive. Neuroetholog-

ical studies of whole animal preparations, while not delving into what the animal

“thinks,” usually rely on a preparation, in which specific patterns of stimuli reliably

elicit behaviors. These studies nonetheless investigate the inner computations of

these reflexive behaviors.

1.2 Examples of Experimental Approaches in Biological Control Theory

To further illustrate the application of systems analysis to organisms, the physicist

Werner Reichardt was one of the first scientists to apply systems analysis to the

phenomenology of the insect’s response to visual motion in its environment (Flynn,

1999). As director of a Max Planck Institute, Werner Reichardt and his colleagues

pioneered systems analysis, using modern physics approaches, to study the relation-

ship between defined visual stimuli and quantifiable behavior of flies (Poggio, 1993).

His initial and famous work leading to the optomotor “motion detection circuit”

was done in collaboration with Bernard Hassenstein. Together the two developed

a mathematical model that largely predicted the way in which insects compensate
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their velocity to involuntary disturbances in their desired trajectory (Hassenstein

and Reichardt, 1951). These experiments were carried out by gluing a beetle to a

stick and placing it inside a rotatable drum. Rotating the drum caused the insect to

mistakenly perceive self-motion in the opposite direction. Whenever this occurred

the insect’s response was to compensate the undesired motion stimulus by walking in

the direction that would negate this perceived change in trajectory. The mathemat-

ical model to explain insect visuo-motor control was based on a delay-and-compare

operation of light intensity signals as measured by two neighboring photoreceptors:

the signal of one photoreceptor was delayed with a low pass filter and compared

by multiplication with a non-delayed signal of the other (Borst, 2000). In order to

get a fully directional model, first, two of these delay-and-compare operations were

paired in a mirror-symmetric fashion. Next the outputs of these operations were

subtracted.

In the analysis of a system there are four main items with which to be concerned:

namely, a description of the type of inputs, the type of outputs, the mathematical op-

eration of the system and the scalars that scale the mathematical operation. These

can form a sound understanding of the system’s dynamics. Using the Reichardt

model as an example, the input would be the light intensities from the visual envi-

ronment, the output would be the direction of turn (left or right), the mathematical

operation would be the delay-and-compare mechanisms, and the numerical values
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would be the cut-off frequencies assigned to the low pass filters as well as the dis-

tance between the photoreceptors. Scientists are usually confronted with a situation

in which the input and output are observable but the mathematical operation and

scalars - the inner computations - are not, much like the way it is with living organ-

isms. In order to approach a solution the scientist will isolate as well as possible the

individual components within the black box, and apply carefully designed patterns

of inputs and observe the outputs. If the scientist has designed the inputs carefully

and on a sound hypothesis, the results of the experiment will allow the scientist to

formulate a model with numerical constants. The observer will know the model is

successful when the results closely match the observed data and withstand future

experiments that attempt to disprove the model. Furthermore, a successful model

will lead to unforeseen predictions and insights.

It is the isolation of a particular component within a system that can be most

difficult. The structure of a central nervous system is microscopic, entangled and

fragile. Because of its complexity and vulnerability to destruction by physical prob-

ing, the individual components of a neural control system can be complicated to

decipher and difficult to isolate. While isolating the computational components

within an organism is difficult, it is not impossible. Investigations into the fly’s

optomotor response eventually gave way to discovering a set of nerve cells, named

lobula plate tangential cells, whose neural response correlates with the optomotor
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behavior (Collett and Blest, 1966; Bishop and Keehn, 1967; Dvorak et al., 1975).

Visual motion that covers large portions of the visual field modulates the activity of

these neurons. Furthermore, the response of these neurons fit well with Reichardt’s

correlation model thus strongly suggesting that these cells participate in the opto-

motor behavior that was also observed in flies.

In order to observe the electrophysiological response of these cells, the fly must

be securely fixed in place with its head tilted forward. Any sort of mechanical

disturbances must be strictly avoided since they make recording from these cells

difficult and highly unlikely. Studies on these cells represent the isolation of an

important computational step within the overall visual flight control of the fly. Much

is now known about the properties of these motion detection cells, such as signal

gain adaptation (Maddess and Laughlin, 1985) and their spatiotemporal receptive

fields (Weber et al., 2010). Although these results are important, most of what

is known about these cells was gathered while the insect was restrained. To put

this condition in terms of Control Theory, the results of studies on lobula plate

tangential cells were gathered under open-loop conditions, i.e. the output from the

neuron in question is not involved in the control of the insect’s behavioral nor are

its inputs equivalent to those under normal behavioral circumstances. While studies

under open-loop conditions are important, they provide a limited perspective if the

goal is to understand how the cell responds when the dynamics of their inputs are
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naturalistic or if the goal is to understand the neural basis of natural behavior.

Control Theory provides a framework for documenting the dynamics of systems

with mathematical operations. Closed-loop models can be predicted from the re-

sponse of components while they are static, i.e. under open-loop conditions. One

example is the modeling results of Drosophila flight that integrates the dynamics of

the visual system and the aerodynamics of the wings and body (Reiser et al., 2005).

The advantage of closed-loop models is that they can be quite complex and integrate

several input and output lines, while also including many intermediary feed-forward

and feed-back processing steps. Ultimately, accurate modeling of a system makes a

strong statement about the level of understanding of its internal workings.

1.3 Brain-Machine Interfacing

A very important advance in the field of medical devices is the creation of brain-

machine interfaces (BMI; also known as brain-computer interfaces). In brain-

machine interfaces, neural signals that represent a subject’s particular intention

or mental task are acquired, processed and interpreted by a computer. This in-

formation is then used to control a machine (e.g. an artificial limb). Born of the

extensive knowledge of basic neural coding principles developed by neuroscientists

and the advances in computers, mathematics and robotics, brain-machine interfaces

promise new directions in the augmentation of human abilities as well as signifi-
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cantly improving the lives of physically disabled people. The device being controlled

by the brain can either be a real machine, like a wheelchair or a robotic limb, or

it can be a virtual machine, like an alphabetic communication software or a web

browser. By providing an interaction link with the outside, people suffering from

motor disabilities due to traumatic lesions to the spinal cord, stroke, and degenera-

tive neuromuscular diseases will be able to regain many of their abilities that were

lost. Likewise, sensory functions can be restored by interfacing with the brain (e.g.

hearing aids based on cochlear implants).

There are many variations of neural signals that are currently being used as

sources for control signals. The neural signals available are intra-cortical multi-unit

activity, electrocorticogram, and electroencephalogram. The electroencephalogram,

which is acquired by electrodes placed on the surface of the scalp, is the best non-

invasive signal available at the moment. The other signals at the very least require a

craniotomy. Electrocorticograms are signals recorded by a grid of electrodes placed

on the surface of the cortex, which offers an improvement of signal quality over the

electroencephalogram whose signals must travel through the skull. The signal with

the highest spatial resolution is the intra-cortical signal, which is produced from

thin, sharp electrodes that penetrate into the brain. This renders this method of

signal acquisition the most invasive and most hazardous.

Two main branches of BMI fall under those that utilize EEG and those that
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utilize intracortical recordings (Millán et al., 2010). Both have their advantages and

disadvantages, and their respective advantages are sufficient enough to continue

research in these two directions. The advantage of EEG is that it is not invasive

and the signal at the surface of the scalp is good enough to be used for machine

control. The disadvantage is that the signal quality and information transmission

rate is quite low, which is mainly due to the sampling of neural ensembles having

nothing to do with the task at hand and the signal degradation caused by bone and

tissue between the brain and the electrode (Niedermeyer and Silva, 2005). The main

advantage of intracortical recordings is that they provide highly localized and specific

neural information. The main disadvantage with intracortical recordings is that they

require a highly invasive procedure that carries a risk of infection and permanent

tissue damage (Lebedev and Nicolelis, 2006). Scarring around the electrode and

tissue movement may also cause the intracortical signal to degrade. Ultimately

these two methods will probably be applied according to individual circumstances

and therefore research in these areas is necessary and important.

While the field of BMI has progressed tremendously since the first demonstra-

tion that cortical activity could be used to control a robotic manipulator (Chapin

et al., 1999), many problems must still be solved before BMIs are brought to clinical

trials and are marketed. There are major hurdles that the field of BMI must tackle

(Lebedev and Nicolelis, 2006). There are issues such as obtaining long-term record-



20

ings from hundreds to thousands of neurons, developing computationally efficient

algorithms that translate neural activity into real-world actions, and learning how to

best take advantage of the brain’s ability to learn to control extracorporeal objects.

It is generally assumed that human BMIs will be composed of an implantable

component that will wirelessly transmit neural information transcutaneously to an-

other component that will do most of the heavy computing and machine control.

Within the scope of computationally efficient algorithms exists the drive to compress

the size of data extracted from the brain in order maximize the information trans-

mitted from within the body. Whether a BMI is detecting multi-unit activity, or a

single neuronal unit, the question of how to process and compress neural activity on

a single electrode is an important issue. Of particular interest has been the issue of

fast and efficient detection of spikes (Obeid and Wolf, 2004; Watkins et al., 2004).

1.4 Biosensors for Robots

For many years scientists and engineers have been investigating methods for using

insects as sensors. Insects are capable of being trained via classical conditioning

methods to exhibit behavioral changes in response to odors that have no natural

relevance to an insect’s survival (Rains et al., 2008). Many studies have demon-

strated that honey bees, moths and wasps can be trained to exhibit behavioral

responses, such as a foraging response or a proboscis extension response, to volatiles
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of explosives when the odor is associated with a food reward.

Insects sensory systems present several advantages over man-made electronic

sensors. For instance, insects have been shown to be more sensitive and energy

efficient than current man-made sensors. In a study that compared the olfactory

sensitivity limits of the wasp, as measured by their antennating search behavior,

and an electronic nose found that the wasp’s response limit was at least 74 times

more sensitive (Rains et al., 2004). Another study that compared the energy cost of

information transfer of a fly photoreceptor model to a silicon photoreceptor circuit

model determined that energetic costs of the silicon model were approximately 10

times higher (Abshire and Andreou, 2002). Therefore, besides using an entire insect

organism and its behavior as the indicator of a target signal source, scientists have

utilized insect primary sensory afferents as the sensor while excluding the rest of the

body. Such is the case with the antennae of the male silk moth. The male silk moth

antennae are extremely sensitive to particular, species-specific pheromones, being

able to detect the presence of only a few molecules. The neurons in the antennae

continue to respond to pheromone when they have been amputated from the moth.

Therefore, by interfacing amputated male silk moth antennae to a robot, it has

been demonstrated by scientists that robots programmed to interpret the electrical

activity of these “biological sensors” can also track pheromone plumes (Kuwana

et al., 1995).
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1.5 Guide to Thesis

The primary purpose of Chapter Two is to build a foundation for understanding

the two papers appended to the end of this dissertation. I give an overview of

what is known about visual modulation of neural activity within the hawkmoth

Manduca sexta, the model system used in this study. I begin by describing neurons

in the visual areas of the moth’s brain that respond to motion, and continue with

neurons further downstream that display similar properties. I then describe how this

activity manifests itself in EMG recordings of the muscles involved in the steering of

flight. Through this description I demonstrate evidence for the flow of information

from early processing centers, to midstream processing centers and finally to the

behavioral output.

Next I discuss a critical component at the interface of spiking neurons and ma-

chines. As we were developing our robotic system it became obvious that our initial

spike detection system needed to be capable of adjusting itself to the changes a

neural signal undergoes during robotic motion. I include an account on the proper-

ties of neural signals as a necessary prerequisite to understanding the logic behind

choosing an appropriate spike detection method. To give context to my contribution

to the field of spike detection, I review prominent spike detection methods used to

enhance the neural signal and facilitate the detection of spikes.
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In Chapter Three, Appendix A, and Appendix B, I present two papers that

contain my major contributions. In the first paper I describe the robot that I helped

develop. I also present data that demonstrates proof that I was able to control this

robot with neural and muscular signals. Although there are now several publications

in the scientific literature on the interfacing of primate brains to machines, this

was the first time a brain signal from an insect was used to control a machine.

Furthermore, I present data that shows that EMGs from a steering muscle were

used to control the robot. The implications of these results are many. Firstly,

this work represents a technological development in the direction of creating mobile

electrophysiological platforms that essentially give a neural system a synthetic body

with which to behave. Secondly, this work further supports the pre-existing idea of

using the sensory system of insects as biosensors for robots and machines.

In the second paper I present the adaptive spike detection system that we ap-

pended to our initial spike detector. During my experiments I continuously found

that motion of the robot was detrimental to maintaining the amplitude of the neural

signal. But in many of the cases where motion caused the neural signal to decrease in

amplitude, there were still spikes that could have been detected if the spike detection

threshold was quickly lowered. Therefore the system was composed of hardware and

software that automatically adjusted the spike detection threshold according to the

maximum height of the neural signal. This adaptive spike detector belongs to a new
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class of spike detection systems that are hardware-based and that are well suited

for brain-machine interfaces. This adaptive spike detection system also represents

an unexpected outcome of my project. By solving the challenges with interfacing

an insect brain to a machine, we developed a spike detection system that can be

applied to human brain-machine interfaces.

Finally, in Chapter Four I include three studies that can be performed with the

system described in Appendix A.
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CHAPTER 2

Background

2.1 Neurobiology of Manduca sexta

Although this species is well known as a model system for olfaction from over 100

publications by J. G. Hildebrand and collaborators (three examples are: Vickers

et al., 2001; Christensen and Hildebrand, 1987; Homberg et al., 1991), there is also

a body of work that has focused on the visual system of this and closely related

species of hawkmoths. In fact, the first recordings of visual motion sensitive neu-

rons were performed in the late 1960s using the privet hawkmoth Sphinx ligustri

(Collett and Blest, 1966), and the neuroanatomy of the moth optic lobes was pub-

lished a few years later (Strausfeld and Blest, 1970). The behavioral repertoire of

the moth appears quite sophisticated to us, at least in comparison to insects such as

houseflies and even dragon flies, which mainly employ ballistic trajectories. Diurnal

hawkmoths can learn to discriminate colors after two trial learning, a performance

that surpasses that of honey bees (Kelber, 1996). Visual control of flight includes the

ability to hover and feed from flowers while maintaining station: making corrective

maneuvers to compensate movements of the nectar source, in front of which the an-
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imal is hovering (Kern and Varju, 1998). Investigations into the neural basis of this

extraordinarily precise compensatory behavior have led to electrophysiological and

morphological descriptions of looming neurons (Wicklein and Strausfeld, 2000) and

wide-field motion-sensitive neurons tuned to vertical and horizontal motion (Wick-

lein and Varju, 1999). The response of these wide-field motion-sensitive neurons is

marked by an increase in spike rate in the preferred direction, and a decrease from

the spontaneous spike rate in the opposite direction, or increases and decreases in

firing in response to expanding or contracting visual stimuli (see also: Collett and

Blest, 1966; Wicklein and Varju, 1999). Information about visual motion that has

been computed in the brain’s optic lobes is relayed by descending neurons to motor

circuits in the thorax that control direct muscles involved in modulating the attitude

and vault of the wings, and thus steer flight direction (Rind, 1983; Kern, 1998).

One of the pairs of mirror symmetric neurons identified in the ventral nerve chord

of Manduca sexta has dendritic arborizations that originate in the protocerebrum of

the brain and whose bushy terminals are found in the meso- and meta-thoracic gan-

glia, as well as the abdominal ganglia (Rind, 1983). Such neurons are crucial in our

understanding of what kind of data is relayed to motor neurons and muscles. And

while the present study focuses more on muscle responses, such premotor elements

will provide important targets for future research. These neurons demonstrate re-

sponses to bilateral receptive fields and are thus similar to binocularly receptive
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motion sensitive tangential cells in the lobula plate of flies (Hausen, 1982). The

behavioral response induced by visual stimuli, which has been identified in flies and

hawkmoths, is strongly suggestive of the optokinetic response typifying human eye

movements. A separate study of Macroglossum stellatarum, a relative of Mand-

uca sexta, identified a wide range of descending neurons that respond to various

orientations to wide-field motion stimuli (Kern, 1998). Given the moth’s need for

quick reaction to dynamic stimuli (e.g. visual motion, wind) it is not surprising that

the moth’s control of flight muscles transduces visual information almost directly,

with very few synaptic delays, between the retina and the motor neuron (Land and

Collett, 1974).

Studies on the activity of muscles during tethered flight have revealed that a

particular set of three muscles, the third axillary pleurodorsal muscles of the second

segment of the thorax, are correlated with the amount of retraction of the moth’s

wings (promotion or remotion; Kammer, 1971). Insect flight is an orchestration of

the mechanical structures of the thorax and the muscles contained therein. Two

systems play a major role in flight, the indirect flight muscles, whose role is to

generate power, and the direct flight muscles, which are involved in steering and of

which the third axillary muscles belong to. The fine directional control of flight in

insects stems from the direct flight muscles that anchor to the thorax and attach

to cuticular structures that form the base of the wing. The direct flight system is
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a complex system of muscles, cuticular specializations and ligaments at the wing

hinge that allow the variation of wing path, supination, pronation, remotion and

promotion (Kammer, 1971). Evidence also suggests that the abdomen acts as a

rudder during flight, thus adding further neuromuscular components in the control

of moth flight (Gray et al., 2002; Mavoori et al., 2004).

The third axillary sclerite and its accompanying muscles are an important com-

ponent of wing control. These muscles are attached at various points on the sclerite

and are anchored anteriorly on the episternum and epimeron such that contraction

of these muscles cause the wing to retract. The third axillary muscular system is

composed of three distinct bundles. The larger bundle, the II PDu, is attached most

anteriorly on the episternum while the two smaller bundles, the II PDm and II PDu,

are attached on the dorsal area of the epimeron (nomenclature after Wendler et al.,

1993) where II indicates the second thoracic segment, i.e. the mesothorax, the PD

is pleurodorsal and u, m, l indicate upper, middle, and lower, respectively). Each

unit of the II PD muscle is innervated by one motor neuron (Rheuben and Kammer,

1987). What makes the third axillary muscle group most intriguing is the fact that

the middle unit, II PDm, is spontaneously active in the quiescent animal. Further-

more, it has been shown that this activity in the quiescent animal is modulated by

visual stimuli that represents yaw, roll, and forward thrust (Wendler et al., 1993).
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2.2 Properties of the Neural Signal

Measuring neural activity is performed with a conductive material placed in living

tissue. The conductive material, which is commonly a sharp metal electrode or glass

capillary, is connected to an electronic circuit that amplifies the electrical potential

changes within the extracellular field of the electrode tip. The typical action poten-

tial signal recorded by the amplifier will have a characteristic fast deflection followed

by slower recovery period toward the DC baseline. Neural spike widths are between

0.3 ms to 3ms while the peak-to-peak amplitude can vary between 50 µV to 500 µV

(Rogers and Harris, 2004). Although, neural spikes can be smaller than 50 µV and

can occasionally be larger than 500 µV (W. Gronenberg, personal communication).

The distance between the source of the signal and the electrode tip can affect the

size and shape of the neural spike. The type of biomass between the electrode and

the cell can also have an effect on the size and shape of the action potential. The

frequency at which neurons can spike varies but is certainly limited by the cell’s

refractory period, which is greater than 1 ms for primate cells (Lewicki, 1998).

It is also common for there to be neural spikes from different sources within

the electrode tip’s volume of sensitivity. Usually they are distinguishable by shape

and size, but often enough these spike signals fire within the refractory period and

overlap. The average rate of overlap for x neurons with spike duration of ∆t seconds
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and with an average firing frequency of y is given by y2∆t(x − 1) (Chandra and

Optican, 1997). The resulting superposition of waveforms affects the geometrical

attribute of the signal, including the peak-to-peak amplitude of the signal.

Besides the occasional neural spike, a normal recording from a brain will also

contain background noise. Large levels of background noise often prohibit measuring

neural activity. Background noise, at its best, contains weak signals that originate

from distant neural and muscle activity that exists globally in the extracellular

medium. Other non-biological sources may enter and pollute the electrophysiological

signal. These sources are largely electromagnetic signals that come from power

lines, motors, lights, computers, etc. High levels of noise pollution, more accurately

measured as the signal-to-noise ratio (i.e. SNR), can greatly handicap the ability to

extract any useful information from the neural signal.

2.3 Methods of Spike Detection

Spike detection is the correct identification of neural spiking events in time. The

process of spike detection can be implemented in software, hardware or a combi-

nation of the two. There are several issues that must be considered in selecting

which method to employ. These issues include the nature of the neural signal, the

computational costs of the spike detection algorithm and, most importantly, the

application for which it is intended. Traditionally, spike detection was a method
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that enabled the study of the temporal properties of extracellular neural recordings

(Kim and Kim, 2003). With the increasing access of computers, many mathematical

techniques have been proposed to automate and increase the robustness and relia-

bility of spike detection (Lewicki, 1998). Overall, many software based methods for

spike detection implement variations of methods such as wavelet transforms (Hu-

lata et al., 2002; Yang and Shamma, 1988; Kim and Kim, 2003), statistical based

thresholding (Chandra and Optican, 1997; Yang and Shamma, 1988; Snider and

Bonds, 1998; Kaneko et al., 1999), and the use of the non-linear energy operator

(Kim and Kim, 2000; Mukhopadhyay and Ray, 1998). These methods are typically

used as a way to enhance the neural signal and suppress the background noise. But

more recently, efforts have been directed toward spike detectors within the frame-

work of brain-machine interfacing (Harrison, 2003; Obeid and Wolf, 2004; Rogers

and Harris, 2004; Watkins et al., 2004).

2.3.1 The Wavelet Transform

The wavelet transform is a linear transform that appears many times in the spike

detection literature. Unlike the Fourier transform, which loses temporal information

once a signal is transformed into the frequency domain, the wavelet transform is

able to preserve temporal information while elucidating the spectral properties of

a signal. The general equation of the wavelet transform is as follows: W (a, b) =
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∫∞
−∞ f(t) 1√

a
ψa,b(t)dt, where ψa,b(t) = ψ( t−b

a
). The most relevant components are ψ,

a and b. The function ψ is called the mother wavelet, so called because of its short

length and because it is the adjustable template used when transforming the signal

into the temporal-spectral domain. There are several templates for the wavelet

transform available, for instance the Coiflet mother wavelet, or the Haar mother

wavelet. The mother wavelet is chosen based on the problem at hand. The scale

parameter a is a scalar that dilates or stretches the mother wavelet along the time

axis. When performing the transform the original signal is projected onto several

wavelets of various scales. These scales are created on a logarithmic base chosen by

the user. For example, if the base scale is 3 then the first scale is 3, the next scale

is 9, the next scale is 27, and so forth. If 2 is chosen, then the scales used will be

2, 4, 8, 16 and so forth. Therefore the scalars always take the values of ai, where

i = 1, 2, 3, .... The base wavelet stretches at higher scalar values in the same manner

that a function will expand or contract when its input variable is scaled. Out of

convenience, 2 is the most common scalar base. The parameter b is the translation

parameter and determines the time location of the wavelet along the signal being

processed. It is also worth mentioning that by virtue of being a linear transform,

an inverse wavelet transform can be used to reconstruct the original waveform.

The wavelet transform is a popular method to emphasize neural spikes and sup-

press background noise since neural spikes are short, high frequency pulses that lend
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themselves to wavelet transform analysis. Hulata et al. corroborates this statement

because, according to them, neural spikes are localized functions analogous to the

wavelet bases (Hulata et al., 2002). Furthermore, when the SNR is low and the

statistical properties of the background noise and the neural spikes are similar, the

wavelet transform can be more effective as a preprocessor than traditional filtering

techniques, e.g. band pass filtering (Kim and Kim, 2003).

According to Yang and Shamma (1988), the wavelet transform is indeed a pow-

erful method of detecting spikes because of the spike-like characteristics of the trans-

form bases, i.e. the bases formed by the wavelets. In their study they performed

a wavelet transform on neural signals and applied a threshold to select those re-

gions of the transformed region that correspond to neural spikes. After thresholding

the wavelet-domain signal, they performed an inverse transform to reconstruct the

denoised neural signal. Next they thresholded the signal again and perform spike

sorting.

In an attempt to detect spikes at very low SNR (SNR = 1.5-3), Kim and Kim

(2003) designed an algorithm that multiplied the output coefficients of wavelet

scales. In this method, the base scale, a, was 2i. The first scale chosen was the

one that produced the largest coefficient. The subsequent two scales that were

chosen were the two adjacent smaller scales. For example, if the coefficient of 24

produced the largest coefficient, then the two other scalars that were chosen were
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23 and 22. The coefficients from these three scales were then multiplied and passed

through a threshold.

Although the wavelet transform allows the simultaneous display of spectral and

temporal information, it can fall short in the case of detecting overlapping spikes.

The explanation for this is that larger values of a, i.e. the scaling factor that

determines the width of the wavelet, increase the width of the wavelet. This is

turn increases the probability that two overlapping spikes will fall within the time

window of the wavelet.

This problem is related to the Uncertainty Principle, which states that the exact

momentum and the position of a particle cannot be known simultaneously. The

analogy to signals is that the instantaneous frequency at an instantaneous point

in time cannot be known. What can be known are the band of frequencies that

existed during a period of time. To be specific, this principle applies to signals by

the following equation: ∆ω∆t ≤ 2π.

To address the problem of overlapping spikes, Hulata et al. (2002) used a math-

ematical technique, called Wavelet Packets Decomposition (WPD), which is an ex-

panded version of the wavelet transform, and created an optimal set of basis vectors

that best highlighted the characteristic features of neural spikes. The wavelet trans-

form divides the whole frequency domain with one wavelet for each scale. Each

wavelet, which can also be seen as a filter, has a bandwidth of ∆ω = π
aTs

, where a is
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the scale and Ts is the signal sampling period. Each bandwidth begins at 0 hertz,

i.e. at DC.

WPD is different in that each scale is used to create multiple bandwidths that

cover the entire frequency domain. In other words, each scale, which has a band-

width of ∆ω divides the frequency domain 2π
∆ω

times, thus forming filters of equal

bandwidth that cover the frequency domain from 0 to ∆ω, from ∆ω to 2∆ω, from

2∆ω to 3∆ω and so forth. Therefore each scale is used to cover the frequency

domain into blocks of [j∆ω, (j + 1)∆ω], where j = 0, 1, ... 2π
∆ω

.

The WPD creates overlapping divisions of bandwidths since each scale creates

several blocks that cover the entire frequency domain. In order to create an opti-

mal, non-overlapping set of bases filters, Hulata et al. (2002) utilized a “best basis

algorithm” method to select the smallest number of bandwidths that best spanned

the neural signal.

2.3.2 The Nonlinear Energy Operator

The Nonlinear Energy Operator (NEO) is another neural spike emphasis algorithm.

This method exploits the instantaneous rise in amplitude and frequency of the neural

spike. The formula that forms the basis of this energy analysis is: Ψ[x(t)] = (dx(t)
dt

)2−

x(t)(d
2x(t)
dt2

). By looking at the kinetic equations of a simple harmonic oscillator it

can be shown that the output of the NEO is proportional to the amplitude and
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frequency squared of the signal (Maragos et al., 1993). A simple harmonic oscillator

with only a spring and mass can be described with the equation md2x(t)
dt2

+ kx = 0,

where m is the mass and k is the spring constant. A solution for this second-

order differential equation is x(t) = Acos(ω0t + θ), where A is the amplitude of

the oscillatory motion, ω0 is the frequency of the system, and θ is the phase of

the oscillation. The constant ω0 can be determined from the mass (m) and the

spring constant (k) and is equal to
√

k
m

. When the NEO is applied to x(t) the

following result develops: Ψ[Acos(ω0t + θ)] = (Aω0)2. Therefore, the output of

the operator is proportional to the square of the amplitude and frequency of the

oscillation (Maragos et al., 1993).

There have been numerous studies that highlight the effectiveness of the NEO

processor as a computationally light spike enhancer. Mukhopadhyay and Ray (1998)

studied the ability of the NEO to accentuate spikes of various temporal widths and

found that even at large widths the NEO was able to give low false positives and false

negatives. Furthermore, they compared the NEO to other processors and found that

the NEO’s gain in spike signal versus background noise was greater than the other

algorithms. Kim and Kim (2000) made the case for the NEO as a spike enhancer

at very low SNR (SNR ≈ 1.0). In their study they demonstrated the tremendous

gain in SNR when the NEO was employed. For instance, when the input SNR was

1.4, the emphasis was such that the gain in SNR was 10. When the input SNR was
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2.0, the output SNR was 80. This boost in SNR allowed an 80 percent probability

of detecting a spike when the SNR was only 1.1. Kim and Kim (2000) did make

the point that this algorithm may not perform well when the signal has both low

SNR and when the background noise and the spike being detected have similar

spectral properties. But as Mukhopadhyay and Ray (1998) state, this algorithm is

particularly attractive because of its low computational complexity and its usability

in the real-time and simultaneous processing of multiple channels.

2.3.3 Thresholding based on Statistical Distributions of the Signal

The wavelet transform and NEO preprocessing methods effectively suppress noise

and enhance neural spikes. Nonetheless, a threshold must still be applied to the

processed signal in order to correctly identify spiking events. There have been many

different thresholding strategies for appropriately selecting parts of the raw signal

that contain a spiking event of interest. For instance in the Wavelet and NEO studies

by Kim and Kim (2000, 2003) the threshold was set to a level that correctly identified

a segment of 20 action potentials and simultaneously minimized the number of false

positives. In the study by Mukhopadhyay and Ray (1998) they set the threshold

manually to a scaled value of the mean of the NEO processed signal.

A more mathematical approach to setting a threshold to detect spikes is one in

which the threshold is set based on the statistical properties of the signal. Early
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in the field of spike detection it was noted that neural signals, as well as the back-

ground noise, could be separated based on histograms of their amplitude distri-

butions (Heetderks, 1978). Furthermore, these distributions seemed to exhibit a

normal, i.e. Gaussian, distribution. Since then, many studies have used this finding

to set thresholds for detecting neural events. For instance, Bankman and Menkes

(1992) developed an algorithm that automatically separated the background noise

from spiking segments in order to obtain an accurate estimate of the background

noise distribution and set an appropriate threshold that avoids false positives. In

their study on the application of the wavelet transform as a spike enhancing algo-

rithm, Yang and Shamma (1988) assumed that the noise was independently and

identically distributed with common Gaussian distribution and then applied a non-

linear threshold scheme that effectively removed segments of the signal less than 4.1

standard deviations above the mean.

2.3.4 Spike Detection for Brain-Machine Interfaces

The need for spike detection can be driven by different applications and therefore

different demands. In the case of purely scientific studies, spike detection methods

can afford to be computationally intense since processing does not need to be done

in real-time and can therefore be performed off-line. In fact, some algorithms are

specifically designed to be performed off-line. This is clearly not appropriate for
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methods that require information about the neural signal in real time. According to

Kim and McNames (2007) there are clinical applications where neurosurgeons prefer

to detect the most dominant spike. In situations where a neurosurgeon is performing

electrophysiology on a human patient, it is critical that the spike detection algorithm

achieve accurate and immediate results. But given that physical space is not a

constraint in the surgery room setting and also that computational resources are

no longer issues, achieving real-time and adaptable spike detection in the medical

setting is not a difficult challenge.

With the advent of brain-machine interfacing, there are many new constraints

that pose interesting challenges for real-time spike detection. In human brain-

machine interfaces, the ultimate goal is to achieve an implantable computer that

amplifies neural signals and transmits information about these neural signals to the

machine that is to be controlled (Obeid et al., 2003). Under these circumstances

space, power consumption and bandwidth for transmitting digital information are

highly constrained (Obeid et al., 2003).

Rather than transmitting the entire neural record, an effective spike detection

algorithm will enable a massive compression of data transmitted from inside the

body by communicating only spike shapes and their timing. This further enables

the ability to record from more electrodes and the probability of recording from

more neurons.
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In response to these challenges, new solutions that address the specific needs of

human brain-machine interfaces have been proposed. The creation of new analog

Very Large Scale Integrated (VLSI) circuits for spike detection may provide key

solutions posed by the constraints of implantable brain-machine interfaces. The

strength of these devices is that they are ultra-low consumers of power, which max-

imizes the life of a power supply and minimizes heat dissipation. There have been

at least two hardware solutions that have been proposed as prototypes for feasible

spike detectors for brain-machine interfaces.

The first one was composed of two low-pass filters, a subtraction stage and an

adjustable-threshold comparator (Rogers and Harris, 2004). In this detector, the raw

signal was passed to both low-pass filters. One filter had a high cut-off frequency

that was meant to remove high frequency noise and the other had a low cut-off

frequency that removed all high frequency content and created a local average. The

difference of the two signals was then passed to the threshold detector that emitted

a digital pulse to indicate when the signal was above the threshold. The design was

meant to provide robust spike detection even in situations of high frequency noise

and low frequency shifting baselines. According to a simulated analysis, their chip

only consumed 1µW of power and achieved 90 percent true positives at SNR = 5.

The other hardware design was based on the concept of setting a detection

threshold at a multiple of the standard deviation of the background noise (Harrison,
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2003; Watkins et al., 2004). This circuit had two main components, a feedback

circuit used to determine the value of the raw signal’s standard deviation and another

component that compared the raw signal to a multiple of the standard deviation.

This circuit assumed that the background noise was Gaussian, although the authors

do note that the t-distribution more closely resembled the histogram of the raw

signal. But according to the authors, the performance of the circuit was not affected

by this difference.

These two designs certainly present a new direction in the field of spike detection

since the spike detection algorithms were implemented in hardware rather than being

implemented in software.
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CHAPTER 3

Present Study

3.1 Introduction

From 1952 to 1955, Werner Reichardt (see Chapter 1) working with Bernhardt

Hassenstein at the Fritz-Haber-Institute of the Max-Planck-Gesellschaft in Berlin

developed mathematical models that describe the behavioral response of the bee-

tle Chlorophanus to visual motion (Poggio, 1993). For these experiments, the re-

searchers placed the experimental subject inside a rotating optokinetic drum. When

the drum was rotated, the perceived motion induced the insect to attempt to correct

(or compensate) this by moving in the direction of the rotation (Reichardt, 1962).

The results of this collaboration led to what is commonly known as the Hassenstein-

Reichardt model for motion detection (Hassenstein and Reichardt, 1956). This

model had a tremendous influence on the study of motion vision in invertebrates as

well as vertebrates (Borst, 2000).

The story of how the Hassentein-Reichardt came about is an excellent example

of methodical and rigorous science that was born of a simple experimental setup,

i.e. a beetle in a rotating drum. The motion detection “model” laid the foundation
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for many predictions about how motion is processed in visual animals, and also led

to the discovery of the motion sensitive neurons in the fly (Dvorak et al., 1975).

Given the scientific and historical importance of conducting initial experiments in

the rotating drum, it seemed appropriate that the initial experiments on the moth-

robot hybrid, the first of its kind, be conducted in an equivalent set up.

Similarly to the first optomotor experiments, we introduce the proof of concept

of our insect-machine hybrid in which a horizontal yaw motion stimulus was used to

drive the biological system, i.e. a fixed moth, which in turn drove the robotic system

to rotate around an insect-centered axis. This robotic system has the potential of

studying the closed-loop control properties of the moth’s nervous system at various

points of computation. We believe that a growth in this highly interdisciplinary line

of work can lead to advances in neuroethology, brain-machine interfaces for humans,

and the use of insects as biological sensors for more intelligent robots and machines.

3.2 Appendix A

The first manuscript presents the initial results of an insect brain-machine interface.

It describes the various components of the system as well as the experimental appa-

ratus used to perform these initial experiments. First, the manuscript reviews the

bioelectrical signals available in the hawkmoth Manduca sexta that can be used in a

visually modulated insect-machine interface. Next, I describe the hardware and soft-
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ware involved in converting these bioelectrical signals into robotic motion. Lastly, I

present open-loop and closed-loop results obtained with visual neurons and a flight

steering muscle. I conclude by discussing the importance of including mechanosen-

sory stimuli in studies of sensory integration and of studying neural systems under

closed-loop conditions. I also present an argument for integrating insect sensory

systems into machines as an alternative to developing synthetic systems that intend

to emulate biology.

3.3 Appendix B

The second manuscript presents a spike detection system that automatically adjusts

its detection threshold based on the height of the spiking signal. This adaptive

system builds on a previously published spike detection system (Rogers and Harris,

2004). In the first section, I describe the problem that this new system attempts

to solve, i.e. the loss of detected spikes due to a sudden decrease in spike height.

I then describe the peak amplitude circuit and the spiking frequencies for which

it was designed. I include that the microcontroller is used to adjust the digital

potentiometer that determines the spike detection threshold. The data I provide

shows that the peak amplitude circuit performs well and also that the entire system

is able to adjust the detection threshold in response to a decreasing signal height.

This system therefore is able to detect spikes as their amplitude degrades and can
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potentially increase the longevity of a brain-machine interface.

3.4 Relative Contributions

The author of this dissertation carried out the experiments and data analysis for

the manuscripts in Appendices A and B. The electrophysiology board discussed in

the manuscript in Appendix A was designed and constructed by Leslie Ortiz (Ortiz,

2006) with the assistance of Dr. Charles M. Higgins. The adaptive spike detection

system discussed in Appendix B was designed by the author of this dissertation and

Dr. Charles M. Higgins. The author wrote both manuscripts.
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CHAPTER 4

Future Studies

Given the proof that bioelectrical signals can be used to control a mobile, terres-

trial electrophysiological system (see Appendix A) it is necessary to consider the

potential investigative paths. Afferent signals from primary sensory areas of the

central nervous system, as well as efferent - meaning motor output - signals have

been used to drive the robot. There now exists an instrument that can be used to

investigate the closed-loop properties of neurons at every level within the behavioral

control system. The following sections propose experiments that can immediately

be performed with the given system. One suggested study is of the influence of

vision and mechanical motion on the activity of a steering muscle. Another study is

on the closed-loop properties of visual neurons, well founded in principles of Control

Theory. The last proposed study is of the neural activity while a moth controls the

robot with muscle signals generated during active tethered flight. These proposed

investigations require little to no modifications of the robotic system described in

this thesis.
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4.1 The Influence of Mechanical Vibration and Visual Motion on the Activity of

Pleurodorsal Muscles

In Manduca sexta, the third axillary muscles are involved in wing retraction (see

Chapter Two for more information). One of the subunits is active and is modulated

by sensory information even while the moth is at rest. The sensory information that

influences the activity of this subunit is visual and tactile (Wendler et al., 1993).

While it is unknown why this muscle is active during rest, it has been shown that

it is active during flight behavior (Kammer, 1971). Given its involvement during

flight and its unique property of being active while the moth is quiescent, this

muscle provides a good opportunity to study the influence of mechanical and visual

stimulation on a motor output under stationary conditions.

4.2 Closed Loop Properties of Wide Field Motion Sensitive Neurons

There have been many studies on the filtering properties of motion detection neurons

(O’Carroll et al., 1996). These studies generally provide a motion stimulus while

the response of the neuron is recorded. A very typical motion stimulus is composed

of thin, alternating black and white stripes. To gain the full range of responses

of a neuron to motion stimuli, the width of the stripes of the motion stimulus

(spatial frequency) and the speed of the motion stimulus (temporal frequency) are
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incrementally varied and, at each step, the response of the neuron is recorded and

quantified. To decrease the influence of transitory effects (e.g. adaptation) on data,

the stimulus is delivered over a span of several seconds and the period of time during

which the response demonstrates a steady response is used as the result.

Studies like these are similar to other attempts to characterize the basic input-

output relationship of a system, which can be taken to be either a neuron or the

entire organism. This strategy of characterizing a system is similar to the use of

Control Theory, when describing a given system. The next step in analyzing a

system is to determine its closed-loop properties.

Visual motion detection cells induce corrective effects by the organism. In other

words, when presented with motion in a particular direction, the insect attempts

to correct by turning in the same direction of the motion stimulus. It is from

quantifying this response that the observer is able to conceptualize the optomotor

control system as providing an error signal to the motor output system. Visual

motion cells therefore transmit information about the magnitude of motion in the

environment to an error correction system that subsequently corrects this error with

a compensatory steering response. But how long does it take to correct for this error

and which derivative of motion - velocity, acceleration, etc. - is most important in

the control algorithm? These are the type of questions that can be answered when

the steady-state errors of a system are analyzed (Savant, 1958).
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In the analysis of the steady-state errors of a feedback control system, an input

is applied and the closed-loop response is recorded. For example, let us assume that

the system being tested is a horizontal motion sensitive neuron that is interfaced

with the robot described in this thesis. The same cylindrical drum also provides

the input. Suppose that an angular velocity of 1 degree per second is applied to

the cylindrical drum. If the insect-robot machine is a perfect velocity compensator,

then after a short amount of time the turning response will be in the same direction

also at 1 degree per second. If the controller is not a perfect velocity compensator

then there will be a steady-state error and the quantity of this error will be the

difference between the desired output, which is equal to the input stimulus, and the

actual output.

The type of input described in this last example is also called a step function, so

called because of the step-like shape its values take when plotted versus time. The

other basic driving function traditionally used in the analysis of the steady-state

response of a feedback control system is the ramp function. This function starts at

zero and linearly increases in value and therefore looks like a ramp when plotted

versus time. The physical description of these driving functions can be anything,

e.g. position, velocity, or acceleration. Interestingly, there exists a way of classifying

a control system based on its steady-state response to these driving functions. The

inputs are usually a step function in position, a step function in velocity (which is
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a ramp function in position), and a step function in acceleration (which is a ramp

function in velocity). The classification of the system is based on its ability to track

the input, i.e. whether or not there is a residual error between the input signal and

the actual response.

There are four basic types of systems described in Control Theory. They are

Type 0, Type 1, Type 2 and Type 3. They are called this based on the response to

the various dynamic orders of motion, namely position, velocity, acceleration and

the calculus derivative of acceleration. If a system response to a step function in

position results in a steady-state error, then the system is said to be of Type 0.

When a system’s steady-state response to a step function in velocity results in a

steady-state error, it is said to be of Type 1. Furthermore, a Type 1 system, while

not able to perfectly compensate for a velocity step function, is able to compensate

for a step function in position. A Type 2 system is one whose response will display

a steady-state error to a step function in acceleration and whose response to a step

function in velocity will be perfect. This logic extends to Type 3 systems, meaning

that this type of system will display a constant steady-state error to a step function

in the derivative of acceleration, but is able to track a step function in acceleration

perfectly. The question, then, is what classification does a system with a horizontal

motion detector fit under?

It has been shown that motion detection in flies is not purely a function of velocity
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and that the output of motion detectors is proportional to velocity only within a

dynamic range of parameters (Egelhaaf and Reichardt, 1987). The nonlinearity

of insect motion detectors also causes the output to be heavily influenced by the

dynamics of the input (Borst, 2007). This illustrates the importance of studying

the computation of these cells under more naturalistic dynamics. Unfortunately

researchers are still not able to record from these neurons during flight. It is in

these questions of closed-loop control that the present robotic system may offer a

solution that comes closer to real closed-loop dynamics. Rather than using abstract

and controlled stimuli, a closed-loop experiment will allow the system to dynamically

adjust its input and perhaps uncover previously unseen dynamics. These cells are

known as motion detectors but the dimension - such as velocity and acceleration

- that is most relevant for the real closed-loop control of motion compensation is

unknown.

Maintaining a single unit recording on the current robot system will be an issue,

but there are ways around this problem. Electrophysiological recordings on a moving

platform are most sensitive to sudden, jolting motion. The stochastic nature of the

neural signal implies that although on average there is a mean firing rate, there are

also brief periods of very high frequency bursts. Also, the robot was programmed to

turn at three velocities: a large constant velocity, zero, or a large negative velocity.

A robot control algorithm that controls the robot based on the instantaneous firing
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frequency and also commands the robot to make quick, large jumps in velocity will

cause the robot to violently jitter. This undoubtedly makes the duration of neural

recordings too short to run an experiment.

Two distinct solutions were developed to mitigate this issue. One was to place

a low pass filter in the control algorithm to remove the high frequency velocity

switching that caused the robot to jitter. This strategy removed the jitter, but the

delay of the filter was very long and effectually caused the dynamics of the robot to

overshadow the dynamics of the neural signal.

The other solution was to implement a ramping type function in the part of

the control algorithm that set the robot’s servo speed. Recalling the control algo-

rithm described in Appendix A, in particular the threshold scheme, the spike count

of the bioelectric signal was continuously compared to two user-defined thresholds,

one was “high” and the other was “low.” When the spike rate was above the high

threshold, the robot was commanded to move in the preferred direction of the neu-

ron. When the spike rate was between the high and low thresholds, the robot was

commanded to stay still. When the spike rate was below the low threshold the robot

was commanded to move in the anti-preferred direction.

In the ramping scheme, modulation of the robot’s velocity was executed by in-

crementing or decrementing the servo velocity, depending on the direction of the

turn command. When no turn was being commanded, the control algorithm incre-
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mentally brought the servo bit value toward zero (unless it was already at zero).

Velocity was incremented or decremented away from zero during turn commands.

Incrementing the velocity away from zero was caused by neural activity during pre-

ferred motion stimuli. Decrementing the velocity away from zero (i.e. increasing the

value in the negative direction) was caused by neural activity during anti-preferred

motion stimuli. The performance of the second solution (ramping) was not fully

studied, but was likely to be superior to the first solution (low-pass filter). It is very

likely that this second control scheme would eliminate the need for the low pass

filter in the first solution, therefore allowing the dynamics of the biosignals to be

visible in the behavior of the robot.

4.3 Robot Controlled by Flight Muscle Signals

There are several problems that prevent researchers from studying neural systems

while an insect is in motion. One major challenge is that it is very difficult to

record neural signals while an experimental insect is behaving. There does not exist

equipment that an insect can carry and allow recordings from its brain. Despite

this, scientists who study insect sensory integration and locomotion control have

been able to find methods that provide sensory input that closely emulates the

dynamics that come with natural behavior.

One approach was to create the visual input of a fly travelling within a visual
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scenery. The flight path of the insect was recorded with sensors and used to recreate

what must have been its visual input (Schilstra and van Hateren, 1998). The visual

stimulus generated was then presented to constrained insects while recording from

their brains (Lindemann et al., 2003). While this study provides compelling reasons

to believe that the recorded neural responses are probably similar to those while

the insect is behaving, data collected from a behaving insect would be required to

support or refute this assumption (Maimon et al., 2010).

A more multi-sensory approach to studying insect behavior involved a moth

that was fixed in place while navigating in a virtual reality arena (Gray et al.,

2002). The researchers were able to use the deflection of the moth’s abdomen

as a control signal and “convince” the moth to navigate through a virtual reality

space. The investigators were also able to record from the moth’s ventral nerve

chord while it was “flying.” Besides receiving visual information, the moth also

received mechanosensory information, in the form of a wind stimulus, and olfactory

information, in the form of pheromone puffs. This approach can shed light on neural

computations in a “flying” insect.

The mobile electrophysiology platform described in this thesis could also be

a platform for performing electrophysiology while a tethered moth is intentionally

behaving. For this to happen there are two steps that must be taken. First, the robot

must be programmed to interpret the spike patterns from flight muscles. Second,
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the moth must learn how to navigate the robot. There are also strong reasons to

believe that this is possible. There are publications that demonstrate cases where

an insect learned seemingly unnatural behaviors in order to control extracorporeal

objects (Wolf et al., 1992; Heisenberg et al., 2001). The moth’s task of learning to

control the robot can be made simpler if the robot’s control algorithm is based on

the phasic EMG activity observed in steering (Wendler et al., 1993).

In the robotic system of this thesis there are three amplifiers available for record-

ing. Two channels can be used to record steering muscle and power muscle activity.

These two channels would be the information sources for the robot control system.

The steering muscle signal can provide information about direction and the power

muscle activity can provide information about speed. Once the moth learns to con-

trol the robot, the third amplifier, along with the electrode positioning system, will

allow dorsal access to the cervical connective and the brain. This will allow investi-

gations of neural activity during behavior, which also includes the mechanosensory

feedback provided by forward and rotational motion.

4.4 Conclusion

The main motivation for building the mobile electrophysiological device described

in this thesis was to create a system that allowed studies of neural systems while

they are in closed-loop motion control. Any experiment that exploits the ability
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to combine closed-loop control and motion can now be performed. The primary

neural pathway for this mobile electrophysiological system was the visual motion-

flight control pathway. Introducing mechanical motion to studies of this pathway

will likely bring surprising revelations, such as the influence of active flight on the

gain of motion sensitive neurons (Maimon et al., 2010).
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