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Preface
Systems that can Explain

We live in an age in which most of the di�cult problems { including pattern classi�cation

and function approximation, the two problems addressed in this thesis { have been studied

in depth. The breadth of research in any given �eld is absolutely astounding. There is a

large body of theory which tells us how well we can do and o�ers a multitude of methods for

achieving nearly that performance. What, then, is left to be researched in these problems?

The availability of computing power is at an all time high, so optimizing the speed of a

solution is no longer of primary concern. Are not existing methods good enough for any

application?

If the only concern is performance, the answer is yes. We can achieve near-optimal

classi�cation performance with a number of algorithms; the same can be said for function

approximation. However, these algorithms may be unsatisfactory for many applications

because it is di�cult to understand what the system is doing; they lack the ability to

explain to the user what has been learned about the problem.

Can we retain near-optimal performance while making systems easier to understand

and use? We can, and that philosophy pervades this thesis. Systems which express their

problem-speci�c knowledge in the form of rules seem quite intuitive to humans and, as

shown in the pages to follow, can achieve performance comparable with other paradigms.

These e�orts are a major step towards computing systems which can not only solve a

di�cult problem, but also explain how they have done it.



viii



ix

Abstract

This thesis describes the architecture of learning systems which can explain their decisions

through a rule-based knowledge representation. Two problems in learning are addressed:

pattern classi�cation and function approximation.

In Part I, a pattern classi�er for discrete-valued problems is presented. The system uti-

lizes an information-theoretic algorithm for constructing informative rules from example

data. These rules are then used to construct a computational network to perform parallel

inference and posterior probability estimation. The network can be extended incremen-

tally; that is, new data can be incorporated without repeating the training on previous

data. It is shown that this technique performs comparably with other techniques includ-

ing the backpropagation network while having unique advantages in incremental learning

capability, training e�ciency, and knowledge representation. Examples are shown of rule-

based classi�cation and explanation.

In Part II, we present a method for the learning of fuzzy logic membership functions

and rules to predict a numerical function from examples of the function and its indepen-

dent variables. This method uses a three-step approach to building a complete function

approximation system: �rst, learning the membership functions and creating a cell-based

rule representation; second, simplifying the cell-based rules using an information-theoretic

approach for induction of rules from discrete-valued data; and �nally, constructing a com-

putational network to compute the function value given its independent variables. Appli-

cations of the system to adaptive control are suggested, including a method for learning a

complete control system for an unknown plant. Experimental validation of the suggested

methods using a ball-and-beam system is shown.
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Chapter 1

Introduction to Classi�cation

For decades now, computer systems have been able to capture visual images, record

sound, and even detect such esoteric quantities as barometric pressure and humidity. Why,

then, can't your computer recognize you when you walk up to it? Why can't it listen to

thunder and tell you it's going to rain?

The answer is that computers can't do these things because the data which must be

processed to make such decisions is incredibly complex. These decisions not only arise

from a large number of factors, but also these factors are subject to random variation and

environmental situations such as lighting and background noise. Any of today's computers

can outperform a human in taking square roots, but in face recognition a human will win

every time; sensory problems are among the hardest problems that exist for computing

systems today.

There are a number of promising approaches to sensory problems. Existing systems

can generally be broken into two parts: sensor preprocessing and higher-level processing.

Sensor preprocessing involves processing what sensors we have in such a way as to remove

the noise and reduce the complexity as much as possible without losing their predictive

power. These processed sensors are often referred to as `features,' and are input to higher-

level systems. It is believed that higher-level systems which could solve realistic sensory

problems will be hierarchical in nature. For instance, a face recognizer might have a

processing layer including an ear recognizer, a nose recognizer and an eye recognizer, and

then another layer which examines the ears, nose, and eyes to determine the particular

identity of the face. In general, any a priori structure which we can give to the problem

will improve our results. Most of the e�orts in the past several decades have been focused

on solving the lower-level portions of these sensory problems with a single system; usually,

some form of pattern classi�er.

Pattern Classi�cation may be de�ned as \machine recognition of meaningful reg-

ularities in noisy or complex environments"[DH73]. In context, pattern classi�cation is

taking as input the preprocessed sensors and making a decision as to the type or `class'

in which it falls. Like the previous step of sensor preprocessing, it serves to reduce the

complexity of the input in such a way that a higher-level system can deal with it more

easily. The processing of sensory data into useful features is largely a black art, and is

highly dependent on the problem at hand; thus classi�cation is the lowest-level system

that can be made completely problem independent. We will consider classi�er systems

which take as input preprocessed features; we assume that the input is in some way pre-

dictive of the class. The limits of our performance will rely largely upon the quality of

feature preprocessing.

A large amount of pattern classi�cation research has been done not in the pursuit of

sensory problems, but with application to database analysis. Physicians wish to predict

the likelihood of a new patient's falling ill given his symptoms by analyzing a database

of previous patient symptoms and outcomes. Teachers wish to determine which students

need extra help given their aptitude test scores by analyzing a database of past student test

scores and performance. Manufacturers wish to determine which parts will fail under stress
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Input Attributes Class Attribute

Example

Temp      Ground      Sky        Air        Wind               Weather

low          cold           dark       dry        high                snowy
high        hot             bright    dry        low                  sunny
medium  cool           dark       wet       high                 rainy
high        hot             bright    dry        high                 windy

Figure 1.1: Example classi�er input �le

by analyzing a database of manufacturing parameters and previous part failures. In these

problems, the data can often be input directly to the classi�er; little or no preprocessing

is required.

In Part I of this thesis, we consider a special (but important) case of pattern classi�-

cation, applicable to both sensory problems and database analysis.

1.1 De�ning Classi�cation

The input to a classi�cation system is a database such as that shown in Figure 1.1. Each

row of the database is an independent example; the columns will be referred to as attributes

of the data, and each value of the output attribute is a class in which the data may be

placed. Let us pose the classi�cation problem in the following manner: learn to predict the

value of the output (class) attribute given the input attributes by looking at examples of

all the attributes. This form of learning is known as supervised because for each example,

the correct class is provided.

We restrict ourselves to the discrete classi�cation problem. A real-world classi�cation

problem may have continuous inputs, instead of discrete ones. While discretizing the

inputs must result in some loss of information, there exist techniques for doing this in such

a way as to maximize the predictive power of the input. (See Section 5.3 for suggestions

on this problem.)

We assume no knowledge of the probability distributions of the input attributes, in

order to tackle the most general (and di�cult) classi�cation problem possible. If knowledge

of the distributions of one or more of the input attributes is known, a parameter estimation

technique will likely be more e�ective than the more general systems we will describe.

It is important to note that the classi�er will be tested on examples it has never seen

before; thus it must have the ability to generalize from the examples it has seen. Just

remembering the examples it has already seen is not su�cient. A basic assumption of

pattern classi�cation is that the set of examples shown to the classi�er (referred to as the

training set) contains examples which are incorrect in some way; that is, they don't follow

the underlying pattern of the data set. We refer to these examples as `noise,' since they

tend to distract us from the actual pattern we are seeking. Thus just remembering the

training set examples will lead to learning the noise as well, and the performance on the

set of examples used to test the classi�er (referred to as the test set) will su�er.



5

p(X|A) p(X|B)

Input X

Figure 1.2: The concept of the Bayes risk

1.2 Choosing a Classi�er

There are literally dozens of techniques for analyzing such databases as described above

(see [DH73]). Springing from statistical theory are techniques such as principal compo-

nent analysis, factor analysis, and Fisher's linear discriminant analysis, all of which serve

to reduce the dimensionality of the data. There also exist statistically-based classi�er

techniques such as Bayesian classi�ers, nearest-neighbor classi�ers, and Parzen window

density estimators. From modern neural network theory, there is the backpropagation

classi�er [RHW86].

Before motivating a decision as to which method is best for a speci�c problem, we

must formalize the concept of the `best' we can do in predicting a class output from a

database. From statistical theory, there is the concept of the Bayes risk. This concept

may be understood by looking at Figure 1.2. Given each class, there is a probability

distribution of the inputs. Let us draw a decision boundary at a given point on the input

axis. To the left side of this point, we will conclude that the class is A; to the right,

B. The probability that we will make an error is the sum of all probability of class B to

the left of our decision boundary and all probability of class A to the right. The optimal

decision boundary may be drawn at the place at which the sum of these probabilities is

minimum. If the conditional probability distributions overlap at all, then even with the

optimal decision boundary drawn, there will still be some probability that we will make

an error. This probability is called the Bayes risk, and its obverse, the Bayes rate, is

the best classi�cation performance that you can expect from any system. Of course, we

cannot know the exact probability distribution of our inputs for a real problem and thus

we cannot always calculate the Bayes rate; however, it is important to realize that in every

case there is a `best' we can do which may not be perfect.

Each of the pattern classi�cation methods mentioned above has its own advantages and

disadvantages, but on most problems one or more of these methods will prove successful
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in predicting the class output at a performance approaching the Bayes rate. In this case,

it is clear that the choice of a classi�er should not depend only on its performance, but

upon other factors. In the remaining chapters of Part I of this thesis, we will present a

rule-based classi�er system whose performance approaches the Bayes rate, and yet has the

advantage over the aforementioned methods that it can explain what it has learned.
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Chapter 2

Rule-Based Systems

In order to construct a classi�er system which can explain itself, we will make use of a

rule-based knowledge representation. In this chapter, we will motivate the use of rules in

a probabilistic framework. We begin with a history of rule-based systems.

2.1 A Brief History of Rule-Based Systems

In this section, we will review the origins and applications of rule-based systems and review

rule-learning techniques to shed light on the novelty of our approach.1

Rule-based systems began with production systems, a general form of rule-based infer-

ence system proposed by Post [Pos43] in the 1940's. Because of the intuitive similarity of

a production system to the patterns of human thought, production systems soon caught

the interest of cognitive scientists. Newell and Simon [NS65, New68] researched the ap-

plication of these systems to psychological modeling in the 1960's, and in the early 1970's

[NS72], proposed them as a good candidate for human cognitive modeling in general. More

recent work by Holland [HHNT86] continues to support the use of production systems for

cognitive models.

The most widespread practical application of rule-based systems has been in expert

systems (often cited as the only useful thing to come out of the golden age of symbolic

AI research), which use rules obtained by querying a human expert to solve complex

decision problems. The idea is to obtain in rule-based form the entire knowledge of an

expert for a particular problem. Avoiding contradictions and constructing a su�ciently

complete rule set becomes quite di�cult for a large problem. This di�culty has become

known as the knowledge acquisition bottleneck. Still, there are many successful examples of

expert systems constructed this way. Some famous examples are MYCIN [SAB+73], which

gives advice on diagnosis and therapy for infectious diseases, DENDRAL [LBFL80], which

analyzes mass spectrograms to determine molecular structure, and XCON/R1 [McD80],

which con�gures VAX systems for Digital Equipment Corporation. Expert systems are

still widely used today, as can be seen by the literally hundreds of papers about them in

the literature of various disciplines, for example, Civil Engineering [TTE91], Chemistry

[MWM91, HBZ92], Chemical Engineering [GS93], and Nuclear Science [CCC93].

A major part of the symbolic AI e�ort was devoted to the learning of rules from

domain examples. Mitchell's `version spaces' [Mit77] algorithm learned by looking at ex-

amples one after the other and generalizing or specializing as necessary so as to arrive at

a reasonable rule set. This system relied on a sequential analysis of carefully chosen ex-

amples. Meta-DENDRAL [BM78] is an extension of the DENDRAL expert system which

was able to learn its own production rules in its speci�c domain. It was quite successful,

even discovering rules previously unknown to chemists, but did not generalize well to other

domains. Michalski's AQ11 [MC80] was a more general rule-learning algorithm that actu-

ally outperformed the expert in its domain! Unfortunately, while the above algorithms are

fascinating from a cognitive science viewpoint, the symbolic AI approach tends to break

down when given noisy examples and fails to scale up to problems of larger dimensionality.

1
For a more detailed history of rule-based systems, see [Smy88].
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More recently, interest in database analysis has generated methods for discovery of

rules. Gaines and Shaw [GS86] use fuzzy logic to induce inference rules about a very

speci�c type of database (a repertory grid). Piatetsky-Shapiro [Pia89] presents a method

for learning `strong' rules from a general database using an ad hoc rule interest measure.

Schlimmer et al. [SMM91] suggest a method for improving an expert rule set by using

examples to suggest re�nements to the rules. McMillan et al. [MMS91] propose a neural

network which learns explicit rules by a winner-take-all competition between all possible

rules. See [PSF91] for an excellent survey of `database mining' techniques.

Also quite recently, in the interest of explanation, there have been numerous attempts

to extract linguistic rules from existing learning paradigms. For example, Quinlan [Qui87]

shows how to extract rules from decision trees, and Tresp and Hollatz [TH93] present

a method for embodying rule-based knowledge in a neural network and then extracting

learned rules from the network.

2.2 A Novel Approach to Rule-Based Systems

Most of the rule-learning approaches mentioned above are based upon strategies which

completely lack a theoretical basis. To arrive at a theoretically sound method for the

learning of rules, we will apply probability and information theory.

2.2.1 A Probabilistic Framework

Since we are processing a database which contains noisy examples, we will use a proba-

bilistic framework. Statistically-based systems are much more robust to noise than other

systems. Even if the noise is severe, the underlying statistics of the data can often be

determined.

We will make some simple probabilistic assumptions about the database which provide

a theoretical backing for the calculations we will make later. We will �rst assume that

the examples in the database are statistically independent identically distributed samples

from an underlying probability distribution. Thus we can use each one as an equally valid

sample for estimating probabilities via relative frequencies. We will also assume that the

input attributes are independent conditioned on the value of the output attribute. That

is, for a given class, the input attributes are independent. This assumption is usually

reasonable, and will be needed later to compute the probability of each class given a set

of inputs.

To use a probabilistic framework, our classi�er must obtain estimates of probabilities

from the database using relative frequencies. To function well, such a classi�er should

be given as input a database which accurately and completely represents the statistics of

the data. Small-sample statistics may be necessary for the processing of extremely small

databases.

2.2.2 Why a Rule-Based Knowledge Representation?

Assuming that we use a probabilistic framework, why should we use rules as a knowledge

representation? To answer this question, we must delve again into a bit of history.

Probabilistic systems which learn from examples have been proposed since early in the

latter half of this century. Uttley [Utt59] conceived of a network in which the probability
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of every combination of the inputs was stored. This network stores a number of proba-

bilities exponential in the number of attributes, but contains the information necessary

for calculating the conditional probability of any conjunction of attribute values given

that any conjunction of attribute values is occurring. This system stores a very large

amount of information, much of which may not be valuable. On the other extreme, the

Bayesian networks of Kononenko [Kon89] store information only about the probabilities

of each input and pair of inputs. Kononenko's network has the same number of nodes as

there are attributes, but only storing information about joint probabilities must make the

restrictive assumption that all attributes are independent in order to estimate conditional

probabilities. This network stores too little information to predict more complex relation-

ships. Somewhere between these two extremes lie systems which decide which higher-order

conjunctive probabilities to store without storing them all. Networks which choose such

higher-order connections randomly were among the �rst neural networks [Ros62]. Ekeberg

and Lansner [EL88] show a method based on a correlation/dependency measure for decid-

ing which such probabilities to store, but again must assume independence of attributes

to estimate conditional probabilities.

We will show in this thesis that information theory provides a measure for deciding

which higher-order relationships are predictive that is superior to simple correlational

or random methods and may be used for conditional probability estimation with less

stringent assumptions. In addition, this measure has the advantage that the relationships

found may be interpreted as rules and used in explaining a decision of the system.

2.3 Limitations of Rule-Based Systems

With a rule-based knowledge representation, a system can represent any possible pattern

of output classes in input space.2 However, how simply can a rule-based system represent

a given class boundary? This depends on the shape of the boundary in input space.

Because a rule is expressed in the form if y then x, where y is a conjunction of input

attributes, it is making a statement about the value of the output at a point, on a line,

or in a box or hyperbox in input space the sides of which are parallel to the input axes.

What happens if a class boundary occurs along a diagonal? In this case, it will take a

larger number of rules to represent the class. For example, see Figure 2.1. Class three, the

boundary of which lies along an input axis, can be simply represented. However, classes

one and two, whose boundary lies on a diagonal, require a large number of rules to specify.

We will refer to this problem as the axis-parallel problem. This problem can be simply

stated as follows: a rule-based representation is much simpler if the output `features' are

parallel to the input axes. We will encounter this problem in both parts of this thesis.

2
In the pathological case, there will be a rule for each example.
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Figure 2.1: Axis-parallel problem example
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Chapter 3

A Rule-Based Classi�er System

In this chapter, we describe a classi�er system based upon information and probabil-

ity theory. The system uses a rule-based knowledge representation, and yet can achieve

performance approaching the optimal. The �nal system is formulated in terms of a com-

putational network for e�cient output computation.

We begin by describing the research in Rod Goodman's lab at Caltech which led to

the development of this system.

3.1 Previous Research

3.1.1 A Measure for Comparing Rules

Smyth and Goodman [GS88] have developed an information-theoretic measure of rule

value with respect to a given discrete data set. This measure is known as the j-measure;

de�ning a rule as if y then X where y is a conjunction of input variable values and X is

a value of the output variable, the j-measure can be expressed as follows:

j(Xjy) = p(Xjy) log2(
p(Xjy)

p(X)
) + p( �Xjy) log2(

p( �Xjy)

p( �X)
)

This measure is the average change in bits necessary to specify X between the a priori

distribution (p(X)) and the a posteriori (p(Xjy)) distribution. Smyth and Goodman have

shown that this measure can be interpreted as a special case of the cross entropy of the

two distributions and satis�es all the properties of an information measure. This measure

can be thought of as a pure `goodness' measure, since it values only the correctness of the

rule. Any inconsistency with the data is harshly penalized.

[GS88] also suggests a modi�ed rule measure, the J-measure:

J(Xjy) = p(y)j(Xjy):

The term p(y) is a simplicity term, valuing the simpler, more common clauses over the

complex, rarer ones. Together with the goodness term, this measure discounts rules which

are not as useful in the data set in order to remove the e�ects of `noise' or randomness.

This has the e�ect of bringing out the underlying pattern in the data. (See Section 8.3.1

for a discussion of alternate simplicity terms.)

The probabilities in both measures are computed from relative frequencies counted in

the given discrete data set. Thus, given a rule, we can go through a data set, count up

matches with the left-hand side, right-hand side, both left- and right-hand sides, and so

forth, to calculate a measure of the value of a rule. This allows us to objectively state

which of two candidate rules is the better.

3.1.2 The ITRULE Algorithm

Now that we can rank rules, how can we search the space of all possible rules to �nd

the best? The Information Theoretic RULE induction algorithm (ITRULE) [Smy88] was
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developed for just this purpose.1 The user will specify two parameters to limit our search:

�rst, the maximum order (number of conditions) d beyond which we will not search, and

second, the number of rules R he wishes to obtain.

Since the best rules are more likely to be lower in order due to the preferences of

the J-measure, we will start with �rst order rules and specialize from there. We begin

by calculating the J-measure for all �rst-order rules. We save rules in a rank-ordered

list R long, so that only the best R rules found so far are saved. We will now consider

increasing the order of each of the �rst-order rules in a depth-�rst search of all possible

specializations of each rule; we continually save the best rules in our list. (To avoid

calculating the J-measure for any rule twice, we will begin with the �rst-order rule with

the lowest-numbered attribute, and consider specializing each �rst-order rule only with

attributes numbered greater than its own.)

A bound for the specialization of a rule has been developed to help speed up the search

algorithm. It can be shown [Smy88] that the J-measure of a specialized rule Js which adds

any condition to a rule if y then X is bounded by

Js � maxfp(X; y) log(
1

p(X)
); p( �X; y) log(

1

p( �X)
)g

This bound will be used to avoid specializing any rule for which no improvement could be

achieved.

The ITRULE algorithm is optimal, in that it produces the best R rules (in a J-measure

sense) of order d or less.

3.1.3 Pruning Rule Sets

By using the J-measure, ITRULE �nds the best rules with each rule in isolation, not the

best rule set. There are three reasons for which we will pick only some of these rules to

use in our classi�er. First, if the user is interested in data analysis, he probably doesn't

want to look at all the best rules; just the smallest set of rules which are necessary to

cover the data. Second, due to the assumptions we make in doing inference with the

rules (see Section 3.1.4), the rule conditions should be independent given the class for the

best performance. Finally, it is clear that by letting the user decide upon the number of

rules R which he wants and then using those rules directly in a classi�er, one will obtain

performance extremely dependent upon the choice of R. The rules in the best rule set

are among those with the highest J-measures, but may not include all of them. Thus

both for understandability and for improved classi�cation performance, we must set the

R parameter to a large value and use a rule pruning2 algorithm to pick the best rule set.

Pruning Algorithms

Many algorithms have been proposed for rule pruning. One of the simplest (and most time

consuming) approaches to rule pruning is a greedy search for the rule set which leads to the

best classi�cation performance on the training set. This approach starts with an empty

rule set and adds a rule only if it improves the overall classi�cation performance. This

1
While we will describe ITRULE in a classi�cation context, it is actually capable of making more

general expert system rules. See [Smy88] for details.
2
This usage comes from the pruning of decision trees.
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pruning method is very time consuming, but yields an excellent classi�cation percentage

on the training set. The performance on the test set varies.

Perhaps the most successful pruning algorithm is the independence pruning approach,

which enforces the conditional independence assumption. This algorithm starts with all

rules in the set and checks each pair with the same class output for dependence. Depen-

dence is de�ned as follows: if the two rules have condition sides y1 and y2, the rules are

dependent if
jp(y1; y2)� p(y1)p(y2)j

p(y1; y2)
> T

where 0 < T < 1 is a user-set threshold. The dependent rule with the lower J-measure is

removed from the rule set. This algorithm is not only more computationally e�cient than

the greedy approach, but also has much better generalization performance.

3.1.4 Estimating the Posterior Probability

Once the rule set is constructed, the rules may be used in parallel to compute the posterior

probability of each class. This approach to rule-based classi�cation is described in detail

in [GHMS92].

Let the subset of all the rules whose condition sides are satis�ed by an example E

in the training set and whose conclusion side conclude X = xj be called Rj . Then we

estimate the probability that X = xj as

log(p̂(xjjE)) = log(p(xj)) +

jRj jX
i=1

Wi;j where Wi;j = log
p(xj jyi)

p(xj)

This formula can be easily calculated by assuming conditional independence of the yi's.

Once the posterior probabilities are estimated, we need only choose the largest probability

to make our classi�cation decision.

The above formula provides a simple method of constructing a computational network.

Consider the network of Figure 3.1. The input layer contains one node for each attribute

except the class attribute. Each node in the second layer represents a rule generated by

the algorithm. Nodes in this layer are connected to the input nodes of the attributes

in the condition side of the rule which they represent; they output a 1 if the condition

side of the rule is satis�ed. The third layer contains a node for each value of the class

attribute. Each second-layer node representing rule i is connected to third-layer node j

with a multiplicative weight Wi;j. The bias of each third-layer node is � log(p(xj)). Each

third-layer node sums its inputs, subtracts the bias and exponentiates the result. Thus,

by the above formula, the output of each third-layer node is the posterior probability of

the class it represents. If desired, a winner-take-all stage can be added to decide upon the

most likely class.

3.2 SQUEEZE: A New Algorithm for Learning Rules

In practice, the ITRULE search algorithm often ends up searching every rule in the space

to the maximum order it is allowed; the bound on the search is not very tight. For larger

data sets, this can mean weeks of computation time. In addition, rule pruning can be

quite time consuming in itself and often does not yield a satisfactory set of rules. Several
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Figure 3.1: Rule-based network

alternative search algorithms have been tried, including genetic algorithms. The following

algorithm was designed to generate rules more quickly than ITRULE, not require rule

pruning at all, and create a concise, understandable explanation of a data set in the form

of rules. This algorithm searches a smaller subset of the search space than other algorithms

by using the examples directly as templates for rules.

3.2.1 Statement of the Algorithm

Given a training set of examples, an obvious way to classify is to retain all the examples and

match an incoming example to be classi�ed to an example in storage. This is equivalent

to regarding the examples as very high-order speci�c rules. However, these rules will not

match any example not explicitly contained in the training set and also model the noise

in the training set. Consider now if we could decide which attributes in each example to

remove in order to generalize the examples to rules which cover more examples and remove

the statistically insigni�cant noise in the data set; the J-measure provides just such a way.

The proposed algorithm for rule generation is as follows. If there are N attributes

excluding the class attribute, each initial rule is of order N . For each rule independently,

do the following:

1. Calculate the J-measure for the rule. Call this rule the parent-rule.

2. For each of the child-rules generated by removing a single attribute from the parent-

rule, calculate the J-measure (If the parent-rule was order K, each of the K child-

rules is order K � 1).

3. Choose the rule among the parent rule and the set of child-rules with the greatest

J-measure. Special cases:

(a) If two rules have the same J-measure, choose the one with the lower order.
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(b) If two rules of the same order have the same J-measure, choose a random one.

4. If the chosen rule is not the parent rule, the chosen rule becomes a new parent rule;

repeat the process starting at step 2. If the chosen rule is the parent rule, terminate.

It should be noted that each example may be expanded in parallel, since each is

independent of all others. Before conversion to a computational network, duplicate rules

can be removed to reduce the complexity of the network generated. However, the weight of

each removed rule should be added to its duplicate which remains. Thus if a rule had �ve

duplicates, it will have six times its original weight. This serves to preserve the statistics

of the original data set.

A simple example of the application of this algorithm is given in Figure 3.2. The data

set is shown at the top of the �gure | it is the truth table for a logical AND. The inputs

(A and B) and output (C) are binary. The tree of rules is shown for each example; the

J-measure is shown for each possible rule. In each case, the algorithm progresses down

the tree, taking the highest J-measure at each step, until none of the children are an

improvement. The resulting rules are shown at the bottom of the �gure.

Incremental Learning

What if all of the training data is not available at one time? Imagine we are learning to

predict a medical diagnosis and patient data is coming in every day. We wish to be able to

train our classi�er system on the data we have now and update it with later data without

repeating all the work. This is known as incremental learning and is an important feature

of any real learning system [Qui91]. It turns out that the SQUEEZE algorithm may be

simply extended to learn incrementally.

To learn rules incrementally, perform the SQUEEZE algorithm on each example in the

initial training set. Retain for each rule the original example which generated it. When

more training data is available, use the following modi�cation to the SQUEEZE algorithm.

For each rule generated from the initial training set:

1. Calculate the J-measure for the rule. Call this rule the parent-rule.

2. For each of the child-rules generated by removing a single attribute from the parent-

rule, or adding back any single previously removed attribute to the parent-rule, cal-

culate the J-measure (If the parent-rule was order K, the child-rules may be order

K � 1 or K + 1).

3. Choose the rule among the parent rule and the set of child-rules with the greatest

J-measure. Special cases:

(a) If two rules have the same J-measure, choose the one with the lower order.

(b) If two rules of the same order have the same J-measure, choose a random one.

4. If the chosen rule is not the parent rule, the chosen rule becomes a new parent rule;

repeat the process starting at step 2. If the chosen rule is the parent rule, terminate.

For each example from the new training set, run the original SQUEEZE algorithm. The

incremental algorithm is the same as SQUEEZE except that child-rules now include those

generated by adding back each previously removed attribute; thus child-rules now have
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A=0,B=0 −> C=0
0.048

B=0 −> C=0
0.128 0.128

A=0 −> C=0

C=0

Example 1

0.002

Example 2

A=0,B=1 −> C=0
0.048

B=1 −> C=0
0.059

A=0 −> C=0
0.128

0.002
C=0

Final Rule Set:

1. IF B=0 THEN C=0
2. IF A=0 THEN C=0
3. IF A=1 AND B=1 THEN C=1

Example 4

A=1,B=1 −> C=1
0.230

B=1 −> C=1
0.059

A=1 −> C=1
0.059

C=1
0.001

Example 3

A=1,B=0 −> C=0

B=0 −> C=0
0.128

A=1 −> C=0

0.048

C=0
0.002

0.059

  Data Set:

   A  B     C
   0   0      0
   0   1      0
   1   0      0
   1   1      1

Figure 3.2: Simple example of SQUEEZE operation
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order one more or one less than the parent rule. If the second training set was statistically

similar to the �rst, the rules generated from the �rst set will not change. However, if the

second training set changes the statistics of the examples, the rules generated from the

�rst training set may have overgeneralized or overspecialized. This modi�cation allows the

rules to become either more general or more speci�c if necessary. J-measures in all cases

are calculated with respect to the concatenation of the two training sets. Note that the

algorithm cannot oscillate, since if the J-measures are the same, we favor the lower-order

rule.

An example of the operation of the incremental algorithm is shown in Figures 3.3 and

3.4. Given only the �rst three examples of the AND truth table, the incremental algorithm

in Figure 3.3 overgeneralizes to the belief that the output is always zero. When given the

�nal (and pivotal) example in Figure 3.4, it is able to respecialize to �nd a good rule set.

3.2.2 Theoretical Justi�cation

Will SQUEEZE �nd a `good' rule set?

If the object of the rule-search algorithm is to �nd the R rules with the highest J-measures,

a straightforward search such as the ITRULE algorithm is the only way to ensure success.

However, we have already stated (Section 3.1.3) that while the set of rules which is best

for classi�cation is among those with the highest J-measure, some pruning of this set is

required. Therefore, what we are really searching for is a set of rules which describes

the data set completely and yet concisely. The SQUEEZE algorithm provides just such a

set of rules. This can be seen as follows: since each example has a rule as a subset of its

conditions, each example is covered. Thus the data set is described completely. In addition,

each rule is generalized as much as possible by the use of the J-measure. Any duplicate

rules are removed. This helps to ful�ll the requirement that the rule representation be as

concise as possible.

Optimality of SQUEEZE

The search for the best rule which can be made from a particular example goes on by

picking the best among the child rules made by removing a single conjunct from the

current parent rule. All the rules which can be made from an example can be found in

a tree in which each level represents a di�erent order of rule and each transition down

represents the removal of a single conjunct. The search technique we have proposed makes

the implicit assumption that the best rule in this tree is found along the path which has

the highest J-measure at each step. But is this a valid assumption? Is is possible for the

algorithm to get `stuck' at a high-order rule and fail to �nd a better lower-order rule? We

would like to prove the following conjecture:

Conjecture 1 The best rule among all the possible rules which can be made

from an example is found along the path which has the highest J-measure at

each step.

Unfortunately, this conjecture is false. It is possible, under certain conditions of the data,

for the algorithm to get stuck at a high-order rule.

Counterexample See Figures 3.5 and 3.6.
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Final Rule Set:

1. C=0

A=0,B=0 −> C=0

B=0 −> C=0 A=0 −> C=0

C=0

Example 1

0.011

0.031 0.031

0.052

Example 2

A=0,B=1 −> C=0

B=1 −> C=0 A=0 −> C=0

C=0

0.011

0.011 0.031

0.052

Example 3

A=1,B=0 −> C=0

B=0 −> C=0 A=1 −> C=0

C=0

0.011

0.031 0.011

0.052

  Data Set:

   A  B     C
   0   0      0
   0   1      0
   1   0      0

Figure 3.3: Incremental SQUEEZE overgeneralizing
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A=0,B=0 −> C=0
0.048

B=0 −> C=0
0.128 0.128

A=0 −> C=0

C=0

Example 1

0.002

Example 2

A=0,B=1 −> C=0
0.048

B=1 −> C=0
0.059

A=0 −> C=0
0.128

0.002
C=0

Example 4

A=1,B=1 −> C=1
0.230

B=1 −> C=1
0.059

A=1 −> C=1
0.059

C=1
0.001

Example 3

A=1,B=0 −> C=0

B=0 −> C=0
0.128

A=1 −> C=0

0.048

C=0
0.002

0.059

Final Rule Set:

1. IF B=0 THEN C=0
2. IF A=0 THEN C=0
3. IF A=1 AND B=1 THEN C=1

  New data set:

      A  B     C
      0   0      0
      0   1      0
      1   0      0

 1   1      1

Old rules updated
by checking up and
down in tree

New rule generated
by checking down in 
tree only

Figure 3.4: Incremental SQUEEZE recovering from overgeneralization
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In Figure 3.5(a), the algorithm gets stuck because the J-measure actually misleads us. On

the top level of the tree, the highest J-measure is that of the only rule which is not an

ancestor of an optimal rule. In Figure 3.5(b), the algorithm gets stuck simply because it

makes the wrong choice out of a number of equally valid rules. Does the algorithm get

stuck simply because it is looking ahead only one step? The example of Figure 3.6 shows

that even looking ahead two levels in the tree will not solve the problem. In general, we

would argue that it is always possible to construct a pathological data set with N input

attributes in which it is necessary to look ahead nearly N steps to �nd the optimal rule.

Therefore, at least some of the rules we will �nd from this algorithm will be sub-optimal.

It is tempting to think of this problem as a tree search problem, as addressed in

classical AI, but in truth it is an optimization problem. Tree search algorithms such as

branch-and-bound and the A* algorithm [Nil80] are only useful when there is a goal state

in the tree. In �nding the `best' rule, we are in truth optimizing our rule measure in a

discrete space. Since no amount of lookahead less than the whole tree will work in every

case, we choose the algorithm which takes the least amount of computation and accept

sub-optimal performance. As it turns out, this is usually good enough.

3 d d d d d d d d D D D D D D D D

Input 2 c c c c C C C C c c c c C C C C

1 b b B B b b B B b b B B b b B B

0 a A a A a A a A a A a A a A a A

Output 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0

The data set

AbCD=>X=1

    0.04238

AbC=>X=1

    0.00582

AbD=>X=1

    0.00582

ACD=>X=1

    0.00582

bCD=>X=1

    0.08476

  Ab=>X=1

    0.10488

  AC=>X=1

    0.10488

  AD=>X=1

    0.01164

  bC=>X=1

    0.01276

  bD=>X=1

    0.01276

  CD=>X=1

    0.01276

    A=>X=1

    0.09212

    b=>X=1

    0.02328

    C=>X=1

    0.00000

    D=>X=1

    0.02552

      X=1

    0.00000

Optimal Rules

Path of SQUEEZE algorithm

bCD=>X=1

    0.08476

  bC=>X=1

    0.01276

  bD=>X=1

    0.01276

  CD=>X=1

    0.01276

    b=>X=1

    0.02328

    C=>X=1

    0.00000

    D=>X=1

    0.02552

      X=1

    0.00000

Optimal Rules

abCD=>X=1

    0.04238

    a=>X=1

    0.09212

abC=>X=1

    0.08476

abD=>X=1

    0.08476

aCD=>X=1

    0.08476

  ab=>X=1

    0.01276

  aC=>X=1

    0.16952

  aD=>X=1

    0.16952

Path of SQUEEZE algorithm

(a) (b)

Figure 3.5: Counterexamples to Conjecture 1
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Optimal Rules

ABCDEF=>X=0

      0.01562

ABCDE=>X=0

    0.03125

ABCDF=>X=0

    0.03125

ABCEF=>X=0

    0.03125

ABDEF=>X=0

    0.03125

BCDEF=>X=0

    0.00000

ACDEF=>X=0

    0.03125

 ACDE=>X=0

    0.06250

 ACDF=>X=0

    0.01180

 ADEF=>X=0

    0.06250

 ACEF=>X=0

    0.06250

 CDEF=>X=0

    0.01180

  ADE=>X=0

    0.02359

  ADF=>X=0

    0.00570

  AEF=>X=0

    0.02359

  DEF=>X=0

    0.02359

  ABC=>X=0

    0.12500

  ACE=>X=0

    0.12500

 ABCD=>X=0

    0.06250

 ABCE=>X=0

    0.06250

 ABDE=>X=0

    0.01180

 BCDE=>X=0

    0.00000

 ABCF=>X=0

    0.06250

 ABDF=>X=0

    0.01180

 BCDF=>X=0

    0.00000

 ABEF=>X=0

    0.01180

 BCEF=>X=0

    0.01180

 BDEF=>X=0

    0.01180

Path of SQUEEZE algorithm

Figure 3.6: Even looking ahead two levels will not help

Looking ahead to Chapter 4, we can see that we still achieve near-optimal classi�ca-

tion performance even with sub-optimal rules. How is this possible? There are several

extenuating circumstances which help the algorithm to �nd a good rule set. First, there

are a number of examples which can lead to any particular good rule. The lower the order

of the rule, the more examples could yield it. Even if the expansion of one example fails to

�nd the rule, it is possible that another will. Second, since the algorithm picks a random

child if they have the same J-measure, it is likely that at least one example's expansion

will lead to the good rule, solving the problem presented in Figure 3.5(b). Finally, a sub-

optimal rule will likely have a lower transition probability. Thus, it will have less e�ect

on the outcome of the classi�cation.

When, and under what conditions, can this `getting stuck' occur? It happens whenever,

at some level in the search, the rule with the highest J-measure is not an ancestor of the

best rule. The conditions on the data under which this can occur are too complex to be

informative without making unrealistic assumptions about the data. The real questions

are: will this happen often enough to impact our performance? Will it grow more or less

severe as the number of attributes increases? Since a theoretical analysis does not yield

any useful insight, it is worthwhile to conduct a simulation study to develop some practical

insight into these questions.

The results of such a study are shown in Figure 3.7. A binary data set was generated

with all possible combinations of input attributes and a random output (no functional

dependence on the inputs) with an equal probability of being one and zero. The number

of input attributes was varied from three to eight. For each data set, the number of
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74.0

54.3

75.6

31.7

21.4

37.8

13.1
8.4

20.6

10.0
5.2

Rules from the SQUEEZE algorithm

Sub−optimal rules

Optimal rules never found

Number of input attributes
    3             4                5               6               7                8

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

 Number of Attributes

 Percent of total sub−optimal

 Percent of sub−optimal 
         with optimal found

3 4 5 6 7 8

(a) (b)

Figure 3.7: Results of simulations with SQUEEZE

unique rules to come out of the SQUEEZE algorithm and the number of these which were

sub-optimal were recorded.3 In addition, a check was made to see which of the unfound

optimal rules were found by the expansion of another example. The average over ten

random data sets for each number of input attributes is shown in Figure 3.7(a). It is more

informative, however, to look at the percentages shown in Figure 3.7(b); as a percentage,

it is clear that the number of sub-optimal rules rises with the number of attributes and

the number of optimal rules found by accident is steadily declining.

From this study, we can conclude that the problem of `getting stuck' gets worse as the

number of attributes increases. It should be expected that performance will worsen as

the number of attributes gets very large. However, this rate at which this condition gets

worse depends completely upon the data set.

Optimality of Incremental SQUEEZE

Suppose we are learning incrementally and, given a very small amount of input data, we

seriously overgeneralize. Will the incremental algorithm get `stuck' at a lower-order rule

and fail to specialize? As discussed for regular SQUEEZE, it is always possible to construct

a pathological data set such that this condition will occur. Since we are specializing as

well as generalizing in this case, the performance study for the normal algorithm gives us

little information. Again, the conditions on the data under which this can occur are too

complex to be useful without unrealistic assumptions about the data. And so again, we

must conduct a simulation study to determine how often the best rules are found.

The same binary data sets were used as in the �rst study, with all possible combinations

of input attributes and an output with an equal probability of being one and zero. Again,

3
It should be noted that SQUEEZE was predicting the output 100% correctly until the experiment

reached 8 attributes; at 8 attributes, it averaged 99.6%.
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Sub−optimal rules

Rules from the incremental algorithm

Rules in common with SQUEEZE
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Figure 3.8: Results of simulations with Incremental SQUEEZE

the number of input attributes was varied from three to eight. The incremental algorithm

was given each data set in ten steps, starting with one tenth of the data and working up to

the whole set. For each data set, the number of unique rules to come out of the incremental

algorithm and the number of these which were sub-optimal were recorded. These rules

were matched with those from the regular SQUEEZE algorithm on the same data set to

see how well the two matched. The average over ten random data sets for each number of

input attributes is shown in Figure 3.8(a). Again, the percentages shown in Figure 3.7(b)

are more informative; the number of sub-optimal rules rises with the number of attributes

and the number of rules in common with SQUEEZE is steadily decreasing. Comparing

the two studies, this algorithm produces not only a higher percentage of sub-optimal rules,

but a higher number of rules.

From this study, we can conclude that the incremental algorithm will produce signif-

icantly less optimal rules than SQUEEZE (which is not unexpected). In addition, the

rules from the incremental algorithm diverge from those from SQUEEZE as the number

of attributes increase.

3.2.3 Algorithm Complexity

In this section, we compute the time complexity of the SQUEEZE algorithm to compare

it to that of the original ITRULE algorithm and �nd out in what cases it is likely to be

more e�cient. In both algorithms, the actual time complexity depends largely upon the

data set, so we will perform a worst-case analysis. In both analyses, let there be N m-ary

input attributes and E examples. Let the arity of the output4 also be m. The basic unit of

time which we will use is an integer compare; everything else will be scaled appropriately.

We begin with the ITRULE algorithm, assuming (the worst case) that the J-measure

bounds never prevent the algorithm from searching the entire tree of possible rules to the

depth d, the maximum order speci�ed by the user. To compute the J-measure for an i-th

4
We de�ne the `arity' of a discrete-valued variable as the cardinality of the set of possible values of the

variable.
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order rule, it takes

J(i) = (i+ 1)E + CE +D

where the �rst term is comparisons for rule matching, the second term is a �xed number

of adds to update the counters, and the third term is the J-measure calculation, which

takes constant time. The ITRULE algorithm does a depth-�rst search, expanding each of

the Nm2 �rst order rules into a tree of higher-order rules. In doing this, it calculates the

J-measures for every possible rule up to d-th order. To simplify our analysis, let us assume

that d < bN
2
c; this is a reasonable assumption for all but the smallest of data sets. Given

this assumption, the dominating time in this expansion is in the computation for the d-th

order rules, due to their large number. The time it takes to calculate the J-measures for

every d-th order rule is

Td-th order = md+1

 
N

d

!
J(d) = md+1N(N � 1):::(N � (d� 1))

d!
((d+ 1)E + CE +D):

In fact, the whole algorithm is dominated by this term and the worst-case time complexity

of ITRULE is

TITRULE = O

 
Emd+1Nd

(d� 1)!

!
:

Thus ITRULE is linear in the number of examples (since only the J-measure calculation

depends upon E) and exponential in the number of attributes and the arity of each

attribute. In the maximum rule order, the time complexity of ITRULE goes up somewhat

less than geometrically.

The SQUEEZE algorithm calculates the J-measure in the same manner as ITRULE,

so J(i) is still valid. To calculate the best rule for a particular example in the worst case

takes

Tbest rule = NJ(N � 1) + (N � 1)J(N � 2) + :::+ 2J(1) + J(0)

+FN + F (N � 1) + :::+ 2F + F

where the �rst N terms are the calculation of J-measures for each successive step in

the algorithm, and the second N terms are comparisons to �nd the maximum for each

expansion step. Expanding this, we �nd that Tbest rule is dominated by the J-measure

calculations, and

Tbest rule � N(NE + CE +D) + (N � 1)((N � 1)E + CE +D) + :::+ (E + CE +D)

= O
�
EN3

�
:

In order to calculate the best rules for each example in the data set sequentially, we must

multiply this time by E, and thus

TSQUEEZE = O
�
E2N3

�
:
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Of course, there are two ways to avoid this �nal multiplicative term. First, the examples

may be expanded in parallel, since each one is expanded independently. Second, if there

are a large number of examples, you need not make a rule from every one; there are only

so many rules. This algorithm scales cubically with the number of attributes, linearly or

as the square of the number of examples (depending upon the implementation), and does

not depend at all on the arity of each attribute.

Incremental SQUEEZE does N J-measure computations and compares at each step,

but the above complexity computation holds for it also. Thus also

TINCREMENTAL = O
�
E2N3

�
:

Quinlan [Qui91] suggests that an algorithm of order O(E2) or more is unlikely to

scale up. He suggests that O(E log(E)) is the highest order which is practical for large

data sets. By this criterion, both ITRULE and SQUEEZE are practical under certain

conditions. The reader should also keep in mind that the time complexities computed

above are worst-case. In practice, the ITRULE algorithm will often take its worst-case

time, while the SQUEEZE algorithm will seldom proceed all the way down the tree to a

zero'th-order rule.

Given these complexities, when should one algorithm be chosen over the other? Of

course, this choice depends upon many other factors; but based upon complexity alone

one should choose ITRULE over SQUEEZE when the maximum rule order needed is less

than three. One should choose SQUEEZE over ITRULE when the arity of the attributes

is high, or higher-order rules are necessary.

3.2.4 Summary

The SQUEEZE algorithm presented in this chapter does o�er signi�cant advantages to

the straightforward ITRULE search technique. It allows the induction of a concise yet

complete rule set without any need for rule pruning. In the case of data sets of higher

arity or in which a rule order greater than two is necessary, SQUEEZE presents a com-

putationally superior method for �nding rules. However, as the number of attributes in

the data set increases, the number of sub-optimal rules resulting from the SQUEEZE

algorithm also increases. It should be expected that as the number of attributes grows

very large, SQUEEZE generalization performance will become unsatisfactory. The incre-

mental extension to the SQUEEZE algorithm, while still providing a reasonable rule set,

produces even more sub-optimal rules than the SQUEEZE algorithm. As the number of

attributes increases, the rules from incremental SQUEEZE diverge from the rules of regu-

lar SQUEEZE. To maximize the future performance of incremental SQUEEZE, it should

be given as good an initial idea of the statistics of the data as possible.
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Chapter 4

Experimental Results

In this chapter, we show the results of experiments with the rule-based classi�er network

to verify its e�ectiveness as a classi�er, test the ability of the incremental algorithm, and

demonstrate the explanation ability we have touted.

4.1 Comparison with Other Approaches

To verify the e�ectiveness of SQUEEZE as a classi�er, we will compare its performance

with several other classi�cation schemes. The classical �rst-order Bayes classi�er was

chosen for comparison as an example of a system which does not use higher-order infor-

mation. However, this system is very simple and performs quite well for many data sets.

The backpropagation network was chosen as a very successful `black box' approach to

neural network learning which uses higher-order information but is opaque to the user.

Also shown for comparison is a trivial method in which the class that appears most in the

examples is always picked (i.e., the most likely a priori class).

Three data sets were chosen for training. The �rst of these is the well-known LED

digits problem in which the system must decide which digit is being shown on a 7-segment

display given the value of each segment. Noise has been added to the examples so that

the optimal classi�cation rate is about 74%. The second data set consists of 435 voting

records from a session of the 1984 US Congress [vot85]. Each example corresponds to a

particular congressman and the attributes correspond to their votes on 16 di�erent issues.

The system must decide on the party a�liation of each congressman. (Not surprisingly,

it is possible to predict this very well.) The third and �nal data set has been generated

from the following Boolean function:

x = (y1� y2) + (y3 � y4) + (y5 � y6)

where � is exclusive OR, � is AND, and + is OR. To introduce noise, the class variable

x has a 10% chance of being `reversed' from its true state. Thus the optimal rate on this

data set is 90%. This data set is designed to require the use of second-order information.

The data sets were divided into disjoint training/testing sets for generating compar-

ative results. The splits were LED: 154/846, Voting: 200/235, and Boolean: 576/64. In

each case, the training examples were chosen at random from the entire data set and

the testing set was the remainder. Ten random runs were averaged to obtain the results

shown.

Optimal Maximum Back First-order Rule-based

Rate a priori Propagation Bayes Neural Network

LED 74.0% 17.0% 68.4% 68.2% 69.5%

Voting 96.0% 53.3% 93.6% 91.1% 89.3%

Boolean 90.0% 67.3% 90.0% 67.5% 89.7%

Figure 4.1: Performance comparison
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It is clear that the rule-based neural network compares with the other classi�cation

schemes. It performs about as well as the backpropagation algorithm on all data sets, and

succeeds in �nding the higher-order representation that the Boolean data set demands

and that the �rst-order Bayes classi�er is incapable of generating.

4.2 Performance of the Incremental Algorithm

We now explore the incremental algorithm's performance and the evolution of the rule-

network's size as it is `grown' example by example.

For this experiment the Boolean data set described in the previous section was used.

While testing on 640 examples, training examples were given one at a time to the learning

algorithm. Classi�cation performance and network size were checked periodically.

The plot of Figure 4.2 shows that the classi�cation performance quickly approaches the

optimal classi�cation rate of 90%. We can see in Figure 4.3 the growth of the network's

conjunctive second layer as more examples are presented to it. Notice that the network

quickly approaches a size of about 30 units after 200 examples, at the same time that the

classi�cation performance reaches 90%. It slowly builds to about 35 units after all 640

examples.

Figure 4.2: Incremental performance

4.3 Explanation Ability

In this section, we will demonstrate with a simple example the explanation ability that we

have motivated rule-based systems with. Let us consider a simple data set which describes

90 animals in a zoo with 18 attributes including whether they have hair, feathers, teeth,

a backbone, �ns, a tail, venom, wings, and so forth. A small sample of the data set is
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Figure 4.3: Growing the network incrementally

shown in Figure 4.4. The animals are separated into seven classes: mammal, bird, snake,

�sh, amphibian, insect and crustacean.

On this data set, the SQUEEZE algorithm classi�es 89 out of 90 animals correctly.

Let us look at a sample of the criteria it uses for �sh and crustaceans.

See Figure 4.5 for the two rules about �sh. These rules are both perfectly correct

and have the same J-measure. The system has discovered that egg-laying is the most

important criterion for determining �sh. If, in addition, the creature has �ns or has a tail

but does not breathe air, it is a �sh. (Dolphins and sea lions have �ns, but are not �sh.)

For crustaceans, the �ve rules may be found in Figure 4.6. In this case, there are

very few examples so the system must make more complex rules. There is an interesting

special case (rule 5). There are only two eight-legged creatures in the data set, and both

are classed as crustaceans. Thus the system creates this rule, but gives it a low J-measure,

since it is only valid for two examples.

Not only do the rules explain the data set as a whole, but they allow the explanation of

each individual decision; for example, let us consider the case of the ostrich, which doesn't


y, yet is classi�ed as a bird. The rules which �re are shown in Figure 4.7. Rule 4 argues

that since the creature doesn't 
y and yet breathes air, it must be a mammal. Luckily,

there are several other criteria which mark it as a bird, including feathers and egg-laying.

Overall, the data set can be quite well understood from the rules describing it. This is

the true hope of the rule-based systems we have proposed: achieving excellent classi�cation

performance while allowing explanation of these two kinds.
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Name Attributes Class

aardvark T F F T F F T T T T F F 4 F F T mammal

antelope T F F T F F F T T T F F 4 T F T mammal

chicken F T T F T F F F T T F F 2 T T F bird

crow F T T F T F T F T T F F 2 T F F bird

pitviper F F T F F F T T T T T F 0 T F F snake

seasnake F F F F F T T T T F T F 0 T F F snake

herring F F T F F T T T T F F T 0 T F F �sh

pike F F T F F T T T T F F T 0 T F T �sh

frog F F T F F T T T T T T F 4 F F F amphibian

newt F F T F F T T T T T F F 4 T F F amphibian


ea F F T F F F F F F T F F 6 F F F insect

gnat F F T F T F F F F T F F 6 F F F insect

cray�sh F F T F F T T F F F F F 6 F F F crustacean

lobster F F T F F T T F F F F F 6 F F F crustacean

Figure 4.4: The zoo data set

Number Conditions Conclusion p(Xjy) J-measure

1 IF eggs T THEN Class �sh 1.000 0.388

AND breathes F

AND tail T

2 IF eggs T THEN Class �sh 1.000 0.388

AND �ns T

Figure 4.5: Rules about �sh

Number Conditions Conclusion p(Xjy) J-measure

1 IF breathes F THEN Class crustacean 1.000 0.258

AND tail F

2 IF toothed F THEN Class crustacean 1.000 0.258

AND breathes F

3 IF airborne F THEN Class crustacean 0.818 0.252

AND backbone F

4 IF backbone F THEN Class crustacean 0.562 0.168

5 IF legs 8 THEN Class crustacean 1.000 0.074

Figure 4.6: Rules about crustaceans
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Number Conditions Conclusion p(Xjy) J-measure

4 IF airborne F THEN Class mammal 0.720 0.157

AND breathes T

7 IF eggs T THEN Class bird 1.000 0.464

AND legs 2

8 IF toothed F THEN Class bird 0.947 0.405

AND venomous F

AND tail T

9 IF milk F THEN Class bird 0.900 0.367

AND venomous F

AND �ns F

AND tail T

10 IF feathers T THEN Class bird 1.000 0.464

11 IF milk F THEN Class bird 1.000 0.464

AND legs 2

Figure 4.7: Rules which �re for an ostrich
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Chapter 5

Future Work

In this chapter, we describe possible improvements to the systems we have proposed and

promising avenues of research in classi�cation with rule-based systems.

5.1 Improvements to the SQUEEZE Algorithm

The SQUEEZE algorithm has been implemented in the most straightforward way pos-

sible. It is likely that there is a way to perform this algorithm while calculating fewer

probabilities. The hashing techniques suggested by John Miller [Mil93] might provide a

starting point.

SQUEEZE does tend to get stuck in local minima in data sets with a large number of

attributes. Perhaps some sort of improved search technique would allow the algorithm to

skip over such minima without becoming computationally impractical.

5.2 Improvements to the Probabilistic Framework

If one of the classes is very likely a priori, it is very di�cult to achieve classi�cation

performance better than just taking the most likely a priori class. This is due to our

probabilistic handling of the data set. In general, it is found that our algorithms perform

better if all values of all attributes are equally likely. Duplication of the examples for less

common classes has been discussed to solve this problem, but may throw o� the statistics

of the input attributes.

5.3 Numeric Inputs

A number of techniques have been tried for dealing with numeric inputs. The �rst is

clustering the inputs; this usually requires the choice of some ad hoc parameters such as

the number of cluster centers or maximum cluster size. The second is quantizing the input

space using an algorithm which optimizes the signal-to-quantization noise ratio (SQNR).

We have tried combining these two approaches by doing a k-means clustering varying k

from 1 to 10, and then picking the quantization with the highest SQNR.

A new approach which is gathering momentum is the use of fuzzy logic to partition the

input space [Bez92]. Perhaps the idea of SQNR can be combined with the fuzzy approach.

5.4 Learning Important Features

Quite often, a classi�er is given far more inputs than are actually necessary to make a

classi�cation decision. It would be nice if the classi�er system could make it obvious that

certain inputs are not being used and simply ignore them. The rule set learned for a

classi�cation problem gives a strong indication as to which inputs are useful. If an input

is never (or very seldom) used, perhaps it can be dropped altogether.
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5.5 Non-box Rules

To overcome the axis-parallel problem (see Section 2.1), perhaps rules could be formulated

in a slightly di�erent manner, such that they no longer specify structures parallel to the

input axes. Rules with forms such as

if (a>b) then class=1

if (0.5*a-1.5*b > 2.0) then class=1

if a=red and b=blue then class=f(c*red+d*blue)

might be attempted. Of course, this will require a reevaluation of the techniques used for

rule valuation and search.

5.6 Multi-Layered Rule Networks

The rule-based classi�er systems we have described draw conclusions directly from the

inputs about the class. It is possible that for some data sets superior performance might

be obtained by drawing conclusions about an intermediate variable which could then be

used to make rules about the class. In some data sets, these intermediate variables are

obvious; but in general, discovering such variables is an unsolved problem.
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Part II

Function Approximation with

Rule-Based Networks
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Chapter 6

Introduction to Function Approximation

You can't pass a single day without seeing one, and yet most people don't even realize

they exist. Automatic control systems are everywhere, from the thermostat in your living

room to the cruise control system on your car to the autopilot on every airplane. Today,

they are even springing up in such unexpected places as clothes drying machines, cameras,

and even toasters.

The more we demand from our devices, the more control systems become a necessity.

Control systems allow a physical system to come to a desired state and maintain that

state as the conditions on the system vary. Typically for an industrial control system, a

mathematical model of the process being controlled (referred to as the plant) is formulated.

Given this model, a great body of theory exists to allow an optimal controller to be

designed. An optimal controller will control the plant as well as it can be controlled,

given the limitations of the physical system. The parameters of a real plant will change,

of course, as the system gets older or if it becomes damaged. There is another body

of theory for adaptive control, which allows a controller to change to �t the plant it is

controlling.

What happens if a su�ciently good mathematical model for the plant cannot be ob-

tained because the plant is too complex or not well understood? In the interesting case of

autonomous robotic systems, this is often a problem. In this case, control theory fails us

and we are left with learning control systems. Learning control systems try to optimize

some performance criterion and obtain numerically a controller which will perform as well

as possible. It is usually not possible to obtain an optimal controller, but adaptive control

is a necessity.

Function Approximation is synthesizing a complete function from samples of the

function and its independent variables. As a general mathematical problem, function

approximation has been studied for centuries. However, some knowledge of the function

to be approximated is usually assumed. In control systems, a function approximator is

handy when one has only examples of the output of a good control system. Usually one

knows only that the function is smooth; aside from this, no knowledge of the function is

assumed. The ability to take examples of good control outputs under these conditions and

form a complete control surface from them is essential to many learning control paradigms.

In Part II of this thesis, we consider the extension of our rule-based philosophy to the

function approximation problem and its application to control.

6.1 De�ning Function Approximation

The problem of function approximation is similar to that of classi�cation, except that

both the inputs and the output are numerical. The problem is still to learn to predict the

output given the inputs by looking at examples of the inputs and output. However, in this

case the question arises as to the behavior of the approximation with noisy input data.

Recall in the classi�er case that we found it necessary to ignore statistically insigni�cant
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examples in order to bring out the underlying patterns in the data. What assumptions

should we make about the numerical data to allow the smoothing of noise? For the type of

problems to which we will apply our function approximator, the assumption that the input

data is noiseless is su�cient. We will assume the data is perfectly correct and attempt to

approximate it as closely as possible. For a discussion of the application of our function

approximation method to noisy data, see Section 10.1.4.

Another di�culty arises because the attributes involved are numerical: characterizing

a `good' solution to this problem is more di�cult than in the case of classi�cation. The

most common goodness measure is RMS error from the example points. Similar to our

assumption in Part I, we will assume no knowledge of the mathematical form of the

function to be approximated. Because of this assumption, the only information we have

about the function to be learned comes from the example points. We will assume that

a linear interpolation between example points would yield the true function, i.e., that

the function does not `jump' between example points; any large gap in the examples will

simply be smoothed over. Thus since our approximation interpolates smoothly between

example points, the RMS error in our approximation from the example points is the best

measure of `goodness.' Because of this assumption, the input to the system must be

representative of the structure of the function to be approximated. Where there is more

complexity in the function, more example points should be located.

6.2 Choosing an Approximator

When one makes no assumptions about a model of the function to be approximated,

mathematical theory can only provide interpolation techniques such as splines for func-

tion approximation. Under this assumption, we are left with so-called `model-free' sys-

tems. These systems include neural networks, memory-based systems, and fuzzy systems.

Neural networks have provided at least two good function approximator systems: the

radial basis function network [PG90] and the backpropagation network [RHW86]. The

radial basis function network works by smoothing between carefully chosen exemplars,

but does not scale well to higher dimensions. The backpropagation network performs a

gradient descent to �nd the best approximation, but the necessity to specify the network

structure beforehand and the di�culties in convergence make this network di�cult to use.

Memory-based systems, which operate by remembering every example presented to them

[MA92], accomplish the function approximation task without learning. Fuzzy systems are

capable of function approximation and also have other advantages over the other systems

mentioned.

A fuzzy system expresses the function approximated in terms of linguistic rules; this

allows a knowledge of what has been learned which is far in advance of what one may learn

from looking at the weights of a neural network. In control systems, this becomes a de�nite

advantage. At any time, the output of the controller can be traced back to a set of rules

which govern its behavior in that state. A particular undesirable behavior of a controller

can be modi�ed simply by changing or deleting a rule which leads to that behavior. In

addition, due to the use of an independent membership function representation for each

variable, fuzzy systems tend to scale well to higher dimensions. Fuzzy logic, the basis for

fuzzy systems, is described in the next chapter.
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Chapter 7

Fuzzy Logic

In order to extend our rule-based philosophy to function approximators, we need a method

for expressing numerical quantities in terms of linguistic rules. Fuzzy logic, proposed by

Zadeh in 1965, provides an ideal framework for doing just that.1

It was Aristotle who formalized in his \Laws of Thought" [Kor67] the binary-valued

logic which is prevalent in computer systems today. However, this logic was not universally

accepted. The Greek philosopher Plato provided an alternative by indicating that there

was a third region between true and false where the opposites \tumbled about." Multival-

ued logic surfaced again with the Heisenberg uncertainty principle of quantum mechanics,

from which again arose the idea of a three-valued logic allowing a value between true and

false. Lukasiewicz [Lej67, 1930's] �rst formalized a three-valued logic, and also explored

four- and �ve-valued logics. Black [Bla37] was the �rst to use a continuous-valued logic,

calling the uncertainty of his constructions `vagueness'; but it was Lot� Zadeh [Zad65]

who �rst formalized this idea by extending traditional set theory and calling it fuzzy set

theory.

In traditional set theory, an object x is either a member of a set S or not. We may

de�ne a characteristic function �S(y) which is one if y is a member of S and zero if not.

In fuzzy set theory �S(y) may take on any value between zero and one (inclusive). Thus x

has a degree of membership in S equal to �S(x). �S(y) is called the membership function

for the fuzzy set S.

It is important to understand the di�erence between probability theory and fuzzy

set theory. Probability expresses the likelihood, over repeated trials, that an event will

occur. Fuzzy set theory allows the expression that, in a single trial, some vagueness exists

about whether an event has occurred. Probability theory is objective, in that it can be

tested by experience [KB78], whereas fuzzy set theory is subjective, based upon the belief

which a given person has that an event has occurred. For example, suppose we are told a

probability:

p(John is tall) = 0:7:

Then we expect that if we look at 100 Johns, about 70 of them will be tall. Suppose,

however, that we are told a membership:

�(John is tall) = 0:7:

In this case, we look at a single John, and we see that he is about six feet tall. He is not

extremely tall, but neither is he short. Thus he has about 0.7 membership in the set of

tall people.

Fuzzy logic seems to model well the patterns and vagueness of human thought; ideas

such as a warm day, a fast car, and a high price can all be elegantly expressed in terms

of fuzzy sets. This has lead to widespread interest in the use of fuzzy logic for expert

systems [Gra91]. Even more prevalent is the use of fuzzy logic in control systems. A fuzzy

logic control system is designed so as to model the operator of a system rather than the

system itself, as control theory does. This fascinating idea has led to millions of dollars

1
The history section relies heavily on those of Brul�e [Bru92] and Kosko [Kos92].
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Figure 7.1: Membership functions for fuzzy speed control system

of products, particularly in Japan, and is the motivation behind the use of fuzzy logic in

this thesis.

In a fuzzy control system, each variable is assigned a set of membership functions

which partition its range into overlapping regions. Rules can then be made about these

regions and a smooth interpolation between these rules will lead to a continuous output.

Membership functions, fuzzy rules, and methods for doing inference with the rules are

discussed below.

7.1 Membership Functions

We will formalize the concept of a membership function by using the concept of a fuzzy

number [KG85]. A linguistic example of a fuzzy number is \around seven." In order

for a fuzzy set to qualify as a fuzzy number, its membership function must satisfy two

criteria: normality and monotonicity. The normality property simply requires that a

membership function take its maximum value at one. The monotonicity property requires

that we de�ne a center C around which the fuzzy number is based. The membership

function must then be monotonically non-decreasing from �1 to C, and monotonically

non-increasing from C to 1. Any membership function which satis�es these properties

will be suitable for our purposes.

There are several membership function shapes which are commonly used. Most com-

mon is the triangular shape, which increases linearly from some point to the center C and

then decreases linearly to some point. Almost as common are trapezoidal membership

functions, which are triangular except for a 
at area in the center. Continuous functions

such as Gaussians are also used, but usually for theoretical analysis rather than actual

practice.

In function approximation, a set of membership functions is speci�ed by the designer

of the system for each attribute, input and output. The set of membership functions

(each of which can be given a descriptive name) de�ne fuzzy sets that the attribute can

be in. For example, see Figure 7.1; the membership functions for a speed control system

are shown. The fuzzy sets for the output are fneg, sm neg, zero, sm pos, posg. Thus an

output of 0.02 has membership 0.9 in sm pos, 0.1 in pos, and 0.0 in all the other sets. Due

to the overlap in the areas shown for each set, an attribute is never entirely in one set or

another.
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7.2 Fuzzy Rules

A fuzzy rule may be de�ned as

if y then X

where y (the condition side) is speci�ed as a conjunction in which each clause speci�es an

input attribute and one of the fuzzy sets associated with it, and X (the conclusion side)

speci�es an output variable fuzzy set. There may be at most one clause for each input

variable. Thus a possible rule for the speed control system would be

IF relative_velocity=too_slow AND acceleration=decel THEN output=pos

Such rules as these specify the value of the approximator output at a point, line, plane,

or hyperplane in the input space, depending on the number of conditions. If a set of rules

has a clause for every input attribute on the condition side of each rule, it is referred to

as a cell-based rule set, because any combination of membership functions for every input

attribute de�nes a cell in the input space. The input membership functions partition the

input space into disjoint cells; each cell corresponds to a point in the input space and the

region of in
uence of the rule centered there.

7.3 Fuzzy Function Approximation

The key to fuzzy systems is that no single rule is used to determine the proper course of

action at any time; rather all rules are used to some degree. It is the tradeo� between

rules with di�erent conclusions that allows a smooth variation of the output.

To determine the (numerical) output, the memberships of each attribute are deter-

mined. (See Figure 7.2 for a graphical representation of the data
ow in this system.) This

`fuzzi�es' all numerical inputs. Each rule in the system �res to a certain degree, deter-

mined a fuzzy AND of the memberships in the conditions of the rule. For example, the

above example rule for the speed control system will �re to the degree of the fuzzy AND

of the membership of relative velocity in `too slow' and acceleration in `decel.' When a

rule �res, it adds a weight proportional to its degree of �ring to the conclusion that the

output is in the set it concludes. The weight for each output set is calculated as a fuzzy

OR of the weights from all the rules which conclude that set. The numerical output is

calculated as a function of these weights. This step is known as defuzzi�cation, because it

goes from a weight in each fuzzy set to a crisp numerical value, the opposite of the initial

fuzzi�cation step.

The speci�cs of fuzzy AND, fuzzy OR, and the output calculation are discussed below.
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7.3.1 Firing the Rules: Fuzzy AND

A conjunction of two fuzzy numbers should be nonzero only when both of the fuzzy

numbers are nonzero. The conjunction should be low when either fuzzy number is low

and high only when both are high. A class of functions which satisfy these properties are

the triangular norms [Lee90]. The greatest triangular norm is the minimum, and the least

is the drastic product. Some triangular norms are:

Minimum AND(x; y) = min(x; y)

Algebraic Product AND(x; y) = x � y

Bounded Product AND(x; y) = max(0; x + y � 1)

Drastic Product AND(x; y) =

8><
>:

x y = 1

y x = 1

0 x; y < 1

In his seminal paper, Zadeh [Zad65] suggested the use of the minimum function for

fuzzy conjunction. While all of the other functions have been used at some time, the

second most common is the product.

7.3.2 Coming to Consensus: Fuzzy OR

The disjunction of two fuzzy numbers should be high when either one is high, and should

be low only when both are low. It should be nonzero when either number is nonzero. A

class of functions satisfying these properties are the triangular co-norms [Lee90]. Some

triangular co-norms are:

Maximum OR(x; y) = max(x; y)

Algebraic Sum OR(x; y) = x+ y � xy

Bounded Sum OR(x; y) = min(1; x+ y)

Drastic Sum OR(x; y) =

8><
>:

x y = 0

y x = 0

1 x; y > 0

Disjoint Sum OR(x; y) = max(min(x; 1� y);min(1� x; y))

Zadeh suggested the use of the maximum function for fuzzy conjunction. This is still

the most commonly (almost exclusively) used fuzzy disjunction function.

7.3.3 Calculating the Output: Defuzzi�cation

Given a weight wi for each output fuzzy set, which can be interpreted as a set of fuzzy

memberships for the output variable, how should we calculate a crisp numerical output?

Again, there are a large number of possibilities.

The most popular techniques require the construction of an output membership func-

tion graph, which is then used to calculate the crisp output. Typically, each membership

function is cut o� (see Figure 7.3) at the height of its weight. From this graph, there are

two common ways to calculate the output. The �rst is the mean of maximum method,

which takes the average output value of the points assuming the maximum membership.

This method tends to result in a jerky mode-based output. A more robust method is the

centroid method, which calculates the center of mass of the entire membership graph.
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Figure 7.3: Output membership graph construction

The singleton defuzzi�cation method, proposed by Sugeno [Sug92], utilizes only the

weights wi for each output fuzzy set and the peaks Pi of each fuzzy set membership

function. The output is calculated as

O =

P
wiPiP
wi

:

Note that the shape of the output membership functions is not used in output computation

{ only the peaks; thus the output membership functions can be considered as `spikes,' or

fuzzy singletons.

7.4 Learning in Fuzzy Systems

Learning in fuzzy systems is still in its infancy. A number of competing approaches exist,

but no well-accepted paradigms have emerged. The approach of Kosko [Kos92] learns only

the rules using a clustering technique. This approach requires the membership functions

to be set up by hand from expert knowledge. Lin [LL91] and, later, Horikawa [HFU92]

and d'Alch�e-Buc [dBAN92] start with a �xed number of rules and membership functions

and perturb them by backpropagation until they �t the data. The required a priori

choice of the number of rules and membership functions limits the practicality of these

approaches. Similar to the approach of the radial basis function network, Wang [WM92]

learns to express a function in terms of fuzzy basis functions. The explanation ability of

the rule-based system is mostly lost, however.

In the next chapter, we present a method for learning a fuzzy system to approximate

example data. The membership functions and a minimal set of rules are constructed

automatically from the example data, and the �nal system is expressed as a computational

network for e�cient parallel computation of the function value. No a priori choice of the

number of rules or membership functions is necessary. This method does not require the

convergence of an iterative energy search algorithm, as in backpropagation methods, and

retains the explanation ability of fuzzy systems by expressing the example data in terms

of a single set of membership functions for each variable.
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Chapter 8

A Rule-Based Function Approximator

In this chapter, we present an entirely new approach to learning a complete fuzzy system

from example data. There are three steps in our method for constructing a fuzzy system:

�rst, learn the membership functions and an initial rule representation; second, simplify

(compress) the rules as much as possible using information theory; and �nally, construct a

computational network with the rules and membership functions to calculate the function

value given the independent variables. We begin with de�nitions and justi�cations of our

fuzzy logic primitives, and then proceed to describe each of the three stages in detail.

8.1 De�nitions of Fuzzy Logic Primitives

Membership Functions

As described in Section 7.1, there is considerable leeway in the choice of membership

function shape and overlap. No clearly optimal choices exist; however, the following

assumptions make the learning process much more well-posed. We will use triangu-

lar membership functions rather than Gaussian or other continuous functions; such

membership functions are simple to implement and computationally e�cient. We

will also specify that membership functions are fully overlapping; that is, at any

given value of the variable the total membership sums to one. (See Figure 8.1 for an

example of both properties.) Given these two properties of the membership func-

1.0

0−0.01 0.01 0.3−0.3 Output

Peaks

Figure 8.1: Piecewise linear fully overlapping membership functions

tions, we need only specify the positions of the peaks of the membership functions

to completely describe them. Another bene�t of these choices for membership func-

tions is that they allow the interpretation of the system as a simple interpolation

between points in the input space. If all rules had a value for every input variable

on their condition side, then each rule would specify the value of the output at a

single point in the input space, and the system would interpolate smoothly between

these points to determine the entire output surface.

Fuzzy AND

We will de�ne fuzzy AND as a product. A product gives a smoother tradeo� between

rules than using the minimum, more common in the fuzzy literature. Use of the
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Figure 8.2: Output membership layer

minimum results in a sharp corner in the output where the minimum stops following

one input and begins to follow the other. The smoother response of the product is

better for a simple interpolative function approximation system.

Fuzzy OR

We will de�ne fuzzy OR as a (normalized) sum. A more common approach in the

fuzzy literature is to use the maximum rule weight, but consider the following rule

set:

1. if i1=low and i2=low then out=high

2. if i1=low and i2=high then out=low

3. if i1=high and i2=low then out=low

4. if i1=high and i2=high then out=high

The surface produced by these rules with summation and with maximum are shown

in Figure 8.2. Summing the weights rather than taking the maximum results in a

smoother output surface. Again, this is better for a function approximation system.

Defuzzi�cation

For defuzzi�cation, we will employ the singleton method, de�ned in Section 7.3.3.

This method is computationally e�cient, allows a simple network implementation,

and since our output membership functions have a symmetric tradeo�, the most

often used centroid method would result in very little di�erence.

8.1.1 Inference with Dependent Rules

There is a problem with the standard fuzzy inference techniques when used with dependent

rules. Consider the example rule set below:
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1. output = low

2. IF input1 = low THEN output = high

3. IF input1 = low AND input2 = low THEN output = med

Such a rule set might well be speci�ed by a human expert or come out of a learning

system such as the one we will describe. Each of the three rules is valid, but not always

applicable. What the ideal inference technique would do is the following: in the corner

input1=low and input2=low, we know from rule 3 that the output should be medium. We

are not interested in the contribution of the other two rules. Similarly, if we are along the

input1=low axis (but not too near input2=low), we wish the output to be high because

of rule 2. If we are not too near the input1=low axis, only rule 1 applies and the output

should be low. We also expect a smooth tradeo� between these regions, in keeping with

the basic principles of fuzzy logic.

If we use the standard fuzzy techniques described in Section 7.3 to compute the output,

rule 1 will add its contribution to rules 2 and 3 to drive the output lower than it should

be even though we know that along the input1=low axis, the output should be high.

Similarly, rule 2 will pull the output higher than it should be at the input1=low and

input2=low corner. We know speci�cally what the value at this corner should be, and the

interference of the other rules is unsatisfactory.

What we really want is that a more general rule dependent on a more speci�c rule

should only be allowed to �re to the degree that the more speci�c rule is not �ring. Thus

the degree of �ring of rule 3 should gate the maximum �ring allowed for rule 2. Both rules

should have a similar e�ect on rule 1. Let the raw degree of �ring of rule i (the fuzzy

AND of its conditions) be called fi, and the adjusted degree of �ring be called oi. Then

we can express this relationship as

o1 = f1(1� f3)(1� f2)

o2 = f2(1� f3)

o3 = f3

Thus at the corner speci�ed by rule 3, it alone is allowed to �re, while rules 1 and 2 are

completely shut o�. In general, the degree of �ring of each rule should be gated by the

degree of �ring of each more speci�c rule on which it depends.

8.2 The Initial Representation

In this �rst step, the membership functions and an initial set of cell-based rules are gen-

erated automatically from the example data. Before learning, two parameters must be

speci�ed. First, the maximum allowable RMS error of the approximation from the exam-

ple data; second, the maximum number of membership functions for each variable. The

system will not exceed this number of membership functions, but may use fewer if the

error is reduced su�ciently before the maximum number is reached.

8.2.1 Learning by Successive Approximation to the Target Function

The following steps are performed to construct membership functions and a set of cell-

based rules to approximate the given data set. Initially, there are no membership functions.

An example is provided in Figure 8.4 of learning the function in Figure 8.3.
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1. Add input membership functions at input extrema.

We add membership functions for each input variable at its maximum and minimum

in the data set. Figure 8.4(a) shows the input membership functions representing

the input extrema in our example.

2. Add output membership functions at the corner points.

A `corner' of the input space is a point at which each of the input variables is at

its maximum or minimum value in the data set. The closest example point to each

corner is found and a membership function for the output is added at its value at

the corner point. Figure 8.4(a) shows the three membership functions obtained for

the output by looking at the corners of the example function.

3. Create the initial rule set.

The initial cell-based rule set contains a rule for each corner, specifying the closest

output membership function to the actual value at that corner. Each rule e�ectively

represents the point that was closest to that corner. Thus we begin with a (hy-

per)planar model of the data. Note that this is not the best planar approximation

to the data, but merely the plane correct at the corners. This provides us with a

good starting point from which to learn membership functions. Figure 8.4(a) shows

the initial planar approximation to the example function.

4. Add membership functions at the point of maximum error.

We compare the current model to the function to be learned and �nd the exam-

ple point with the maximum absolute error. We then add a membership function

for each variable at its value at the point of maximum error. This allows us to

completely specify this point, totally eliminating its error. Figures 8.4(b)-(e) show

the membership functions added at the point of maximum error for four iterations,

gradually improving the approximation to the example function.

5. Construct a new cell-based rule set; update output membership functions.

In this step, we construct a new set of rules to approximate the function. Construct-

ing rules simply means determining the output membership function to associate

with each cell. While constructing this rule set, we will also add any output mem-

bership functions which are lacking in the data; note that when we add a single new

membership function, we add a number of rules to the cell-based set. The correct

output value for any point which was not explicitly added may not be among the

output membership functions.

The best rule for a given cell is found by �nding the closest example point to the

rule (recall each rule speci�es a point in the input space). If the output value at this

point is `too far'1 from the closest output membership function value, this output

value is added as a new output membership. After this addition has been made, if

necessary, the closest output membership function to the value at the closest point

is used as the conclusion of the rule.

6. If error threshold has been reached or the maximum number of member-

ship functions has been reached in all input variables, exit. Otherwise,

go back to step 4.

1
De�ned as a �xed percentage of the range of the output variable.
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By Figure 8.4(e), the RMS error of the model from the example function is so small

that the algorithm can terminate.

In order to make the above algorithm work properly on realistic data, a numerical trick

must be employed. To avoid having membership functions for a variable at 10.1, 10.05,

9.995 and 10.0 at the same time, we set a threshold T such that if a candidate membership

function is closer to another than T , it will be considered already there and not added. T

is typically set at a �xed percentage of the range of the variable.

8.2.2 Control System Considerations

In a general function approximation system, we are concerned with reducing the error in

all parts of the input space equally. However, if we are learning a control system we are

more concerned with accuracy in the approximation near the `zero-error' or `goal' state.

It is acceptable if the approximation is less precise far away from the goal state, as long

as the control system is able to get the plant near the goal state. Near the goal state,

we require more precision in order to have a satisfactory result. This uneven requirement

for precision is usually expressed by fuzzy system designers by putting more membership

functions near the goal state. To allow for this requirement, in �nding the point with the

maximum error in the algorithm given above, we multiply the error calculated for each

point by a weighting factor which is greater if the point is closer to the goal state and less

if not. This will result in more membership functions near the goal state. We typically use

a function which decreases exponentially with distance from the goal state; the severity of

this decrease is set high if the function to be learned contains much complexity irrelevant

to the control problem, and is set low if most of the details of the example function are

important. The following function has been used successfully:

W (D;Dmax;M) = eD log(M)=Dmax

where D is the Euclidean distance from the goal state, Dmax is the maximum distance

from the goal state, and M is the desired weight at the maximum distance.

As an additional measure to assure a precise response at the goal state, we add mem-

bership functions before learning at the goal state in each variable. This assures that the

system will know exactly what to do at the goal state, rather than bouncing back and

forth between points on either side.

8.2.3 Theoretical Considerations

Note that given an in�nitely dense concentration of data points, the error in approxima-

tion to any bounded (not necessarily continuous) function within a closed region of the

input space can be driven arbitrarily small by not restricting the number of membership

functions. This is equivalent to specifying a larger and larger number of points in the input

space to be interpolated between. However, for a �nite concentration of data, a limit of

membership functions will be reached past which the error will begin to increase. Obvi-

ously, if the number of membership functions increases enough, there will be some cells in

which no data points lie. The closest point to the rule will be in some other cell, creating

an unpredictable conclusion for the rule. This will cause approximation error, whereas

without this membership function, the data points on either side might be smoothly in-

terpolated between. Thus the membership functions can be no closer (on average) than



47

2

4

6

8

10

2

4

6

8

10

0

10

20

30

2

4

6

8

10

2

4

6

8

10

0

10

20

30

Figure 8.3: Function to be learned

the data points themselves. Ideally, we wish the data to be much more dense in every

region than the membership functions need to be in that region.

8.3 Compressing the Rules

In order to have as simple a fuzzy system as possible, we would like to use the minimum

possible number of rules. The cell-based rule set resulting from the membership function

learning step contains many more rules than are necessary to represent the data. These

rules can be compressed into a set of rules which are not cell-based { that is, they may

have less conditions than there are input variables.

We propose the use of the SQUEEZE algorithm discussed in Part I of this thesis for this

purpose. The key to the use of this method is the interpretation of each of the original

cell-based rules as a discrete example. The cell-based rule set becomes a discrete data

set which is input to the rule-learning algorithm. This algorithm learns the best rules to

describe the data set. This new rule set will approximate the same function as the original

cell-based rule set with fewer rules.

In order to compress the rules without inducing too much error, we must introduce a

modi�ed rule measure.

8.3.1 A Modi�ed Rule Measure

We have previously (Section 3.1.1) discussed information-theoretic measures of rule value

with respect to a given discrete data set. The �rst measure introduced is known as the j-

measure. The j-measure is a pure `goodness' measure, in that it values only the correctness

of the rule. The other measure discussed, the J-measure, uses a multiplicative simplicity

term to discount rules which are not as useful in the data set in order to remove the e�ects

of `noise' or randomness.

Using SQUEEZE to learn rules with the j-measure is like a truth-table simpli�cation

of the data set { examples will be combined only when no error is caused in the prediction

of the data set. This compression is `lossless' in that it always allows perfect prediction
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Figure 8.4: Successive approximations to target function
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of the data set. Using the J-measure, on the other hand, we ignore noise in the data to a

large extent and will combine examples even if some prediction ability of the data is lost.

This compression is `lossy,' in that some of the data set may be unpredictable from the

resulting rules.

If we simply use the j-measure to compress our original cell-based rule set, we don't

get signi�cant compression. However, for a controls application, we can only tolerate a

certain margin of error in prediction of our original cell-based rule set and maintain the

same performance. In order to obtain compression, we wish to allow some `lossy-ness,' but

not so much as the J-measure will create. The J-measure was designed for a data set in

which some underlying pattern existed along with noisy examples (a typical model for a

classi�er). In this data set, on the other hand, every example is meaningful, and we don't

wish to discount as many uncommon examples as noise. We thus propose the following

measure, referred to as the L-measure, which allows a gradual variation of the amount of

noise tolerance by modifying the rule simplicity term (see Figure 8.5):

L(Xjy) = f (p(y); �) j(Xjy)

where

f(x; �) =
1� e��x

1� e��

The parameter � may be set at 0+ to obtain the J-measure since

lim
�!0

f(x; �) = x

or at 1 to obtain the j-measure, since

lim
�!1

f(x; �) = 1 (x > 0)

Any value of � between 0 and1 will result in an amount of compression between that

of the J-measure and the j-measure; thus if we are able to tolerate some error in the pre-

diction of the original rule set, we can obtain more compression than the j-measure could

give us, but not as much as the J-measure would require. Consider the rule compression

example shown in Figure 8.6. This �gure shows that as we vary the parameter � in the

L-measure from large to small, the error in predicting the original rule set (treated as a

discrete data set) holds at near zero for some time before increasing. By the time the error

has reached 5%, more than 30% compression of the original rules has been obtained.

8.3.2 The Rule-Compression Algorithm

Clearly we can vary � until we get as much error as we can tolerate, but is there a way to

calculate the � which will lead to this error? Since the `compression' that is our criterion

is calculated from the number of rules coming out of the SQUEEZE algorithm, there is

very little that theory can tell us about it. In addition, predicting the error on a discrete

data set beforehand from theory is impractical. However, the second best thing would be

to have an algorithm to calculate � for a given desired compression. Figure 8.6 suggests

an elegant method.

By use of the incremental SQUEEZE algorithm, it is possible to vary � until the

desired compression is reached without rerunning the compression from the beginning.

This is accomplished as follows:
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Figure 8.7: Example functions

1. Start � at a very high value (so that the rule measure is the j-measure).

2. Run incremental SQUEEZE to compress the rules as much as possible.

3. Check if the stopping criterion has been reached, either by counting the rules which

would come out of the algorithm or checking the error on the training set. If so,

exit.

4. Decrease � by a constant factor.

5. Go back to step 2.

At each run of the incremental SQUEEZE algorithm, the rules will generalize as much

more as the new rule measure will allow. Since the simplicity criterion is being constantly

weakened, the algorithm will proceed only down the rule trees as far as it can. When the

stopping criterion is reached, the desired � has been found.

8.3.3 Theoretical Considerations

Interpretation of the L-measure

With the introduction of the L-measure, we have a generalized simplicity criterion in our

rule measure. What does this mean in terms of the J-measure simplicity criterion?

Using p(y) as a simplicity criterion, as in the J-measure, has a pleasing theoretical

interpretation: when the J-measure is summed over all possible y, the mutual information

between the output X and the input Y is obtained. It is also the easiest probabilistic

simplicity criterion to calculate. However, is it the `right' simplicity criterion? Will it

always yield the appropriate tradeo� between simplicity and j-measure? The answer is, of

course, no. Like everything else in the data analysis realm, the importance of simplicity

is dependent upon the data. The J-measure criterion seems to be a good choice for a large

number of data sets, but cannot be theoretically shown to be the best.



52

1

2

3
med

high
input2 low

input1 high low

Lateral inhibitory connections

Input
Membership
Functions

Rules Output
Membership
Functions

Defuzzification

Figure 8.8: Computational network constructed from fuzzy system

How much compression can be obtained?

The axis-parallel problem (Section 2.1) limits the amount of rule compression we can

obtain. The amount that it is possible to compress the rules without error is directly

proportional to how much the `features' of the function to be approximated are parallel to

the input axes. Rule-based approximation systems break a function down into rectangular

hyperboxes in the input variable space. A cell-based rule set speci�es a value in each box

where data exists. The rule compression system works by combining similar boxes, but

can only combine boxes if there is a similar pattern along an input variable axis. For

example, consider Figure 8.7. The function in (a) has a ridge parallel to the input1 axis.

This function can be simply expressed in terms of fuzzy rules. However, consider the

function in (b). This is the same function rotated 45�. This function has a rather complex

description in terms of fuzzy rules, and little compression can be obtained.

8.4 Expressing the Rules in Network Form

Constructing a computational network to represent a given fuzzy system can be accom-

plished as shown in Figure 8.8.2 From input to output, layers represent input membership

functions, rules, output membership functions, and �nally defuzzi�cation. A novel feature

of our network is the lateral links shown in Figure 8.8 between the outputs of various rules;

these links allow inference with dependent rules. Each layer is described in detail below.

The Input Membership Layer

This layer merely implements the input membership functions by generating a value

between zero and one given a numerical input. A connection is made into each node

in this layer from the input variable for which it is a membership; a connection is

made out of each node in this layer to each rule which has this input membership

as a condition.

The Rule Layer

2
The rules represented here are the dependent example rules from Section 8.1.1.
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This layer contains a node for each rule, receiving inputs from the appropriate in-

put layer membership functions, and connecting to exactly one output membership

function node. Each node performs a product (fuzzy AND) of its inputs.

The links between the rule layer and the layers before and after it have unit weight.

(See Section 10.1.2).

The Output Membership Layer

Each node in this layer takes inputs from all rules that conclude this output mem-

bership function and outputs the sum (fuzzy OR) of the weights for that output

fuzzy set.

The Defuzzi�cation Layer

This layer performs a defuzzi�cation by normalizing the weights from each output

membership function and performing a convex combination with the peaks of the

output membership functions. This implements the singleton method.

Lateral Inhibitory Links

The lateral arrows in Figure 8.8 are inhibitory connections which take the value at

their input, invert it (i.e., subtract it from one), and multiply it by the value at their

output. More generally, each rule has a lateral inhibitory link coming to it from

every higher-order rule which contains all of its conditions. This allows inference

with dependent rules, as discussed in Section 8.1.1.

8.5 Summary

In this chapter, we have presented a method which, given examples of a function and

its independent variables, can construct a computational network based on fuzzy logic

to predict the function given the independent variables. The user must only specify the

maximum number of membership functions for each variable and the maximum RMS error

from the example data.

There are three innovative aspects of this system, each of which is valuable indepen-

dently:

� Membership functions are learned by successive approximation.

Membership functions are often generated by hand. This scheme allows the mem-

bership functions to be chosen based only upon an error criterion by an algorithm

which must terminate in a small number of steps.

� Cell-based rules are compressed into a minimal rule set.

Many systems exist using cell-based rule sets. The ability to compress such rule sets

and retain the same performance will lead to more manageable, understandable rule

sets.

� The problem of inference with dependent rules is solved.

When a system designer sets up a fuzzy system, he may well want to use dependent

rules. This inference scheme allows the rule system to perform as he would expect

it to.
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The �nal fuzzy system's actions can be explicitly explained in terms of rule �rings. If

a system designer does not like some aspect of the learned system's performance, he can

simply change the rule set and the membership functions to his liking. This is in direct

contrast to a neural network system, in which he would have no recourse but another

round of training.
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Chapter 9

Application to Control Systems

In this chapter, we describe the application of our proposed function approximator to

multiple-input, single-output, discrete-time, closed-loop automatic control systems. We

begin by demonstrating the conversion of a neural controller to a fuzzy controller on a

simulated problem, and then discuss the learning of a controller for a completely unknown

plant.

9.1 Converting Any Controller into a Fuzzy Controller

Given examples of the output of a working controller su�cient to cover the input space,

we can learn a fuzzy approximation to the control function which will also function as a

controller. We assume that the prototype controller simply implements a nonlinear func-

tion of the input variables; any controller internal state variables will render this approach

ine�ective. We will demonstrate this application of our proposed function approximator

with the problem of truck-and-trailer backing.

Loading
Dock

Truck and Trailer

Cab
Angle

Truck
Angle Y position

(of truck rear)

Figure 9.1: The truck and trailer backer-upper problem

The problem of backing up a truck and trailer to a loading dock, as posed by Nguyen

and Widrow [NW89], is quite di�cult, sometimes requiring that the truck actually drive

away from the loading dock in order to turn around. We will specify that the truck

may only drive in a reverse direction. Jenkins and Yuhas [JY92] have hand-crafted a

very e�cient neural network solution to this problem with only two hidden units. Its

trajectory is quite e�cient, especially considering the simplicity of its implementation. We

have chosen to approximate this system because it is highly nonlinear1 and its features

are non-parallel to the axes; this makes a more challenging approximation problem for our

system. The truck and trailer backer-upper problem is parameterized in Figure 9.1.

The function approximator system was trained on 225 example runs of the Jenkins-

Yuhas controller, with initial positions distributed symmetrically about the �eld in which

the truck operates. In order to show the e�ect of varying the number of membership

1
This problem is only nonlinear if posed as in Figure 9.1. Geva et al. [GSW92] have shown that if polar

coordinates are used, a linear controller can solve the problem.
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Figure 9.2: Results of experiments with the truck backer-upper

Number of truck angle membership functions

3 4 5 6 7 8 9

Number of Rules Cell-Based 75 100 125 150 175 200 225

Compressed 48 67 86 100 114 138 154

Compression 36% 33% 31% 33% 35% 31% 32%

Figure 9.3: Number of rules and compression �gures for learned TBU systems

functions, we have �xed the maximum number of membership functions for the y position

and cab angle at 5 and set the maximum allowable error to zero, thus guaranteeing that

the system will �ll out all of the allowed membership functions. We varied the maximum

number of truck angle membership functions from 3 to 9. The e�ects of this are shown

in Figure 9.2. Note that the error decreases sharply and then holds constant, reaching its

minimum at 5 membership functions. The Jenkins-Yuhas network performance is shown

as a horizontal line. At its best, the fuzzy system performs slightly better than the system

it is approximating.2

For this experiment, we set a goal of 33% rule compression. We varied the parameter

� in the L-measure for each rule set to get the desired compression. (In each case, the

prediction error of the original rule set was 5% or less.) Note in Figure 9.2 the performance

of the system with compressed rules. The performance is in every case almost identical

to that of the original cell-based rule sets. This validates the e�ectiveness of our rule

compression and dependent rule inference schemes. The number of rules and the amount

of rule compression obtained can be seen in Figure 9.3.

One thing we have not quanti�ed in this example is the smoothness of the truck trajec-

2
This is due to the fact that the Jenkins-Yuhas system approaches zero truck angle at the loading dock

asymptotically, whereas the fuzzy system turns sharply to zero truck angle and backs up straight to the

dock.
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(a) Jenkins-Yuhas hand-crafted neural system

(b) Learned fuzzy system

Figure 9.4: Demonstration of mode-based behavior of fuzzy system
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tory (see Figure 9.4). Although the learned fuzzy system with 5 truck angle membership

functions actually performs better in RMS docking error than the original Jenkins-Yuhas

network, its path is sometimes not as smooth. The fuzzy truck backer-upper has `modes'

of operation: the truck will �rst turn around, then back up in a straight line at a diagonal

angle, then change direction sharply and back towards the loading dock. This is directly

related to the piecewise approximation to the original function.

9.2 Learning a Controller for an Unknown Plant

In the last section, we showed the application of our proposed fuzzy function approximator

to the learning of a control function for a simulated system given samples of the actions

of a good controller. While this is certainly useful in converting an existing controller to

a fuzzy rule-based one, it begs the question, \What will we do when faced with a new

system, for which there exists no good controller?"

In this section, we will suggest a technique for learning a complete control system for an

unknown plant. In addition, we will show the results of experiments with a ball-and-beam

system which bear out the usefulness of this method.

9.2.1 The Loop-Back Approach

Learning a new controller for a physical system presents a dilemma. To learn given no

initial knowledge of the plant, a learning controller must experiment with the system and

make mistakes until it reaches its goals. To quote renowned learning researcher Tom

Mitchell at the recent NIPS '92 robot learning workshop, \Tabula rasa learning will never

scale up." In other words, we expect that as the di�culty of the control problem increases,

this experimentation will grow more and more complex until it becomes intractable. In

many cases, it may simply be impractical to experiment while learning a new controller;

how many helicopter crashes per day can you stand?

Luckily, it is not necessary to learn from nothing. In any system, there are basic

rules that we humans know intuitively about the controller. These rules may not form

a complete controller, but at least give some idea of the control of the system in certain

cases; for example, \If you want it to nose up, pull the stick back." What we don't know is

exactly how much you must pull the stick if you want to level the vehicle. The ideal learning

system would be able to make use of this common-sense knowledge in boot-strapping itself

to a good controller. By employing fuzzy logic, we can do just that.

Because our system is based on fuzzy logic, we can embody prior knowledge of the

controller into a `boot-strap' control system in terms of membership functions and rules.

We can then adapt this controller to the real system. We accomplish this as follows (see

Figure 9.5 for a block diagram):

1. Create a fuzzy controller from whatever common-sense rules may be available. Mem-

bership functions should be chosen via the best knowledge that the designer has

about the system parameters.

2. Convert this fuzzy controller into a table-based controller by calculating its output

on a grid of points.

3. Adapt the table-based controller to �t the physical system until the performance is

satisfactory (by some pre-speci�ed criterion).
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Figure 9.5: The Loop-Back Approach

4. Give the adapted table-based controller as input to the function approximator pre-

sented in the last chapter, and a fuzzy controller which approximates its performance

will result.

5. If performance is found at a later time to be unsatisfactory in some way due to a

change in the plant, the �nal fuzzy system can be quickly adapted to the new plant

by using it as an initial controller in step 2.

Step two, creating a table-based controller from a fuzzy controller, is no trick | this

is just calculating the output at a grid of points in input space. However, this is likely

to drastically increase the amount of memory required to specify the controller. Step

four, learning a fuzzy controller from the adapted table-based controller, we have already

discussed in Chapter 8. The learned fuzzy system will represent the table-based controller

using far less memory; in addition, we regain the inherent explanation ability of a rule-

based system. Step three, adapting the initial table to a physical system, is the backbone

of this approach, and requires some explanation.

9.2.2 Adaptive Table-Based Controllers

There are a large number of algorithms for table-based adaptive control.3 Perhaps the

earliest such attempts were made by Waltz and Fu [WF65] who partitioned the system

input space and tried to �nd the optimal control for each sub-region by a reinforcement

scheme. Michie and Chambers [MC68] chose a similar representation scheme, but use

an algorithm for determining appropriate control actions when `payo�' is delayed. There

are several neural network approaches which could be interpreted as table-based control:

Albus' CMAC [Alb75] generates control actions using several overlapping input space

regions; Rumelhart et al. [RM86] again encode an input in terms of its membership

in several overlapping regions and feed this encoding to a neural network; Rosen et al.

3
This genealogy of table-based adaptive control follows that of Gonzalez [Gon93].
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Figure 9.6: The Extended Self-Organizing Controller

[RGV92] propose the use of non-overlapping regions which shift according to the system

dynamics. Gonzalez [Gon93] re�nes an initial coarse partition of the input space at need,

learning the best control action for each region. From a fuzzy control perspective, Scharf

and Mandic [SM85] proposed an algorithm which partitions the input space and modi�es

the control actions incrementally by a input space `goodness' criterion.

The time complexity of such algorithms can be very high, so due to the lack of com-

putational power available and our need for a real-time implementation of the adaptive

controller, we have chosen the extremely simple algorithm of Scharf and Mandic, described

below.

The Extended Self-Organizing Controller

Scharf and Mandic of Queen Mary College proposed an adaptive `fuzzy' controller in 1985

and applied it to the learning of a controller for a robotic arm. This controller was called

the SOC (Self-Organizing Controller). We will describe an extension to their controller,

which used discrete outputs and updates.

The extended controller (ESOC, see Figure 9.6) operates by partitioning the input

space into a rectangular grid of possible states, referred to as the output matrix. The

controller learns an appropriate control response at each grid point, and smoothly varies

between these control values between grid points. The learning is accomplished by the

use of a performance matrix, which is the same dimension as the output matrix. The

performance matrix tells the numerical desirability of each state in the input space, and

gives an incremental direction to change the control output if this state has been arrived

at. The performance matrix is �xed before learning; the output matrix is the only data

modi�ed during learning. Learning takes place while the controller dynamically controls

the plant. Learning proceeds on each iteration of the controller as follows (let there be d

controller inputs):
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Figure 9.7: The ball-and-beam problem

1. The performance increment is calculated by smoothly varying between the 2d per-

formance matrix values nearest the current state.

2. The controller looks into the past a �xed delay and �nds out the system's former

state.

3. The 2d points in the output matrix nearest the former state are updated by adding

the performance increment. Each grid point gets a portion of the increment propor-

tional to its relative distance from the former state.

We assume implicitly in this adaptation scheme that the current state depends only upon

the former state and the output at that time (Markov property). This way, we can

attribute any `badness' at the current state to the output at the former state. As the

learning proceeds, control outputs which lead to undesired states are changed, and those

which lead to desired states are unchanged. Eventually, the learning algorithm should

converge to the controller with the desired performance criterion. However, the success of

this method depends on the choice of the performance matrix; the performance matrix is

set up by trial and error, which limits this approach.

9.2.3 Experimental Results with the Ball-and-Beam Problem

In order to validate our suggested loop-back approach, we have performed experiments

with the ball-and-beam problem. This control problem, as diagrammed in Figure 9.7, is

to bring a ball to a desired location on a horizontal beam by controlling the angle of the

beam. This problem is quite nonlinear for a large error in the ball position. We will begin

by demonstrating the e�ect of our learning system on a simulated ball-and-beam system,

and conclude with the same experiments on a real ball-and-beam system.

Simulated Ball-and-Beam

If we choose the radius of the ball from the center of the beam r and the angle of the beam

� as our state variables, the dynamics of the system can be expressed parametrically as
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shown below [Cas90]:

_x1 = x2
_x2 = x1x

2
4 �G sin(x3)

_x3 = x4
_x4 = u

y = h(x) = x1

where (x1; x2; x3; x4) =
�
r; _r; �; _�

�
and G represents the acceleration of gravity: G =

9:8m=s2. In this canonical statement of the problem, we desire to bring the ball radius

y = r to some set point s by controlling the torque on the beam u = ��. The set point s

may be constant or a function of time. For our simulations, we will assume that the motor

driving the beam operates in such a fashion that it can be modeled with a maximum

angular velocity _�max; that is, given a maximum input, the beam motor will provide

only enough torque to move the beam at a constant angular velocity. This assumption is

consistent with the design of a servo-motor, such as the one used in our actual hardware

implementation. Thus our real command to the simulation will be u0 = x4 = _�.

In order to simulate the system, we must specify some parameters. Let us specify that

the beam is one meter long; if the ball reaches the end of the beam it will be stopped.

We will also specify that the maximum angular velocity of the beam is _�max = 0:9m=s2.

Almost solely, this parameter determines the di�culty of the problem in simulation. This

parameter has been set just higher than the minimum value that will allow a solution of

the 3 set point problem discussed below. We will simulate with a time step Tstep = 1ms,

and our controller will give a new output every Tloop = 20ms. The maximum angle that

the beam will be able to take on will be speci�ed as �max = �=4, or 45 degrees.

Our controller will take as input the error from the desired set point

E(t) = r(t)� s

and the change in the error (referred to as D-error)

_E(t) =
E(t)�E(t� 1)

Tloop

The controller will output a desired beam angle �des.
4 We will calculate the desired beam

angular velocity as

_�des =
�des � �(t)

Tstep

and the commanded beam angular velocity as

u0 = _�(t) = min( _�des; _�max)

The performance matrix used in ESOC was designed as speci�ed in Figure 9.8. The

performance matrix describes the input space path that we wish the controller to follow

in getting the ball to the set point. This path requires a constant speed when the absolute

error is above some threshold Efar, a gradual slowing down towards zero with slope S

when the error is between Efar and Enear, and zero speed when error is less than Enear.

4
The beam angle is output because it is much easier to design a reinforcement controller for beam angle

than for beam angular velocity.
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Figure 9.8: Performance matrix design

The constant speed requirement at large error assures that the ball will not go faster than

the system can control; the gradual slowdown assures that the ball will reach the set point

at zero speed; and the zero speed requirement near zero error is used to damp oscillation

near the set point. The performance matrix values are zero on the ideal path, positive

above it, and negative below it. The values get larger the farther the distance from the

ideal path. A gain parameter on the performance matrix allows a variation of the learning

rate. With the proper choice of the parameters Efar, Enear, and S, this path will get

the ball to within Enear of the set point with no overshoot and maintain it there with a

minimum of oscillation.

The performance matrix is implemented as a nonlinear grid of points in the input

space. To avoid cluttering the discussion of experiments, all of the parameters necessary

to specify the performance matrix for each experiment to be shown are listed in Section

A.2.

Simulation A: Three Set Points

For our �rst simulated experiment, we will designate three set points s on the beam:

at s1 = �0:375m, s2 = 0:0m, and s3 = 0:375m. We begin learning with the output

matrix set to all zero (such that the default output is to balance the beam). We train the

system by changing the set point between s1; s2; and s3 and waiting for the ball to stop.

In the beginning, the ball follows an input space path as shown in Figure 9.9(a). The

ball has signi�cant overshoot and oscillates before reaching the set point. As we train the

controller, its performance improves until (a simulated time of 50 seconds later) the input

space paths look as shown in Figure 9.9(b). This controller has no overshoot and will not

oscillate at the set point. It follows a path close to the one designated by the performance

matrix. Ordinarily, we would stop training here. What will happen if we continue training

the system? The results of overtraining on this system are shown in Figure 9.9(c), after

an additional simulated minute of training. The system now tries to too closely follow the
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desired path; this results in overshoot and oscillation, mostly as the system attempts to

reach the desired path as quickly as possible and is unable to compensate for its speed.

The best controller (Figure 9.9(b)) is now expressed as a table of numbers representing

the control output at a grid of points in the input space. The nonlinear surface learned is

shown in Figure 9.10.5 We can see near small error a gentle movement of the ball towards

the goal of zero error and zero speed, and at larger error a wave-like surface which speeds

the ball up and then slows it down as it nears the set point. Note also that there are some

areas of the input space around the larger values that have never been visited.

This problem is learned too quickly in simulation to bene�t from an initial fuzzy

controller as speci�ed in the loop-back approach, but let us construct a fuzzy controller

from this table-based one using the methods from Chapter 8 and compare its performance

with the table-based controller. If we specify beforehand that there will be a maximum

of nine membership functions for each of the inputs (see Section A.1 for a complete list of

function approximator parameters), we can use the fuzzy function approximator to obtain

the fuzzy controller shown in Figure 9.11.6 The performance of the original table-based

controller is shown in Figure 9.12(a), the fuzzy controller with uncompressed rules in

Figure 9.12(b), and �nally the fuzzy controller with compressed rules7 in Figure 9.12(c).

The original table-based controller performs ideally, as we trained it to do. The fuzzy

controller is an approximation to the table-based controller, and as such, does not perform

quite as well. This controller exhibits some overshoot and damped oscillation. The fuzzy

controller with compressed rules is an approximation to the fuzzy controller, and again

we lose some performance. In general, we should expect our performance to decline with

each successive level of approximation to the original controller.

Simulation B: Sinusoidal Set Point

Due to its non-linearity, the ball-and-beam problem has been addressed quite often

in the control systems literature. The most common demonstration is that of tracking a

sinusoidally moving set point. These results for our system are included for comparison

with the published results of [Cas90, Tee91, HSK92, HR92] who use similar ball-and-beam

dynamics. The sinusoidal set point which we will employ is

s(t) = 0:375 sin(2�
t

T
)

where T is the period of oscillation. Thus this sinusoid moves between s1 and s3 of the

previous experiment.

Again, we start the output matrix at all zeros (balanced default) and train the system

with a sinusoid of period T = 5 seconds. The ball cannot track sinusoids much faster

than this due to our maximum assumptions on the beam angular velocity; this makes the

problem about as di�cult to learn as it can be. The performance of the system as it learns

5
Even though the grid is nonlinearly spaced, the grid points have been plotted at regular intervals to

facilitate observation of the detail near zero.
6
The membership functions are numbered from most negative to most positive, starting with zero. The

number of membership functions for each variable is given in parentheses. The rules are shown in a matrix

indexed by the membership function number. A number in the matrix indicates a second-order rule; a

vertical or horizontal box with a large number in it indicates a �rst-order rule.

7
Given the dependent rule inference scheme, the best way to compress these rules would be to specify

that the output is memb11 unless otherwise speci�ed. However, that rule is only good in the context of the

other rules; alone, it is quite bad and so is not found by our rule compression algorithm.
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Figure 9.9: Input space paths of simulated system while learning
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from nothing is shown in Figure 9.13.8 By the end of this training, it is tracking the ball

with very a small error. A plot of the performance of this controller as it begins tracking

a sinusoid of period T = 5; 10; 20, and 30 seconds is shown in Figure 9.14(a). The ball is

started at s1 = �0:375 to cause a large initial error. The ball reaches the desired path

within 3.5 seconds and tracks the sinusoid with an oscillating error that diminishes as the

period T increases. There is no overshoot or oscillation in reaching the set point. For a

detail of the steady-state error, see Figure 9.14(b). The error diminishes so far by T = 20s

that the roundo� error from a four-digit 
oating point representation can be observed.

The error is virtually constant at T = 30s; this small constant error is probably due to the

fact that the system was trained only with a negative initial error (the only asymmetry

in its training). This error is smallest when the sinusoid reaches its minimum peak, and

largest when the sinusoid reaches its maximum peak.

Now let us compare the performance of a fuzzy controller on sinusoid-tracking with that

of the table-based one. The fuzzy controller constructed from the learned sinusoid-tracking

table-based controller is shown in Figure 9.15, its transient error (with compressed rules)

in Figure 9.16(a), and its steady-state error (with compressed rules) in Figure 9.16(b).

There is signi�cant oscillation as the simpli�ed fuzzy system tries to begin tracking the

sinusoid, and the steady state error is an order of magnitude larger than before the fuzzy

approximation. However, considering the wide range of speeds and the precision of output

8
In this �gure, between 15 and 25 seconds, the ball hits either end of the beam while the system is

learning. Because our simulation stops the ball if it reaches the end of the beam, we can learn this problem

faster. If we assume an in�nite beam, the solution can still be learned, but the performance matrix gain

must be reduced.
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required for sinusoid-tracking, this fuzzy system with only 27 output values and 47 rules

performs remarkably well.

Ball-and-Beam Hardware

To demonstrate the e�ectiveness of this strategy on a real control problem, a ball-and-

beam system was built. A diagram and picture of the setup can be found in Figure 9.17.

To form the beam, a stainless steel rod and a brass cylinder were used. The brass cylinder

was insulated with shrink wrap and wound tightly with 90 feet of very thin tungsten wire.

These two rods are set a �xed distance apart to form the beam. At one end, a pivot is

attached, and at the other, a servo controls the height of the beam. This allows us to

directly control the angle of the beam. A conducting `ball' rests on the beam. Its position

is sensed by applying a voltage to the tungsten wire winding of the brass cylinder, which

is returned through the ball and the steel rod. From the resulting current, the position of

the ball can be calculated. The `ball' was actually implemented by an arrangement which

looks more like an axle of a train, to provide more weight and contact area for a stronger

current. Again, we desire to bring the ball to some desired point by controlling the angle

of the beam.

This setup is a little di�erent from the canonical control problem we have described

and simulated. The main di�erence is that the pivot is at one end of the beam instead of

in the center. This actually makes the control problem easier by eliminating a singularity

at zero ball radius.

There are a number of important non-idealities of this system. These include:

1. Static Friction

Because the ball rests upon a cylinder wrapped with coils of wire, it tends to stop

and refuse to move without a large angle of the beam. This is a major non-ideality

we must deal with to control the ball on this platform.

2. Non-linearity of ball position detector

The tungsten wire which is used to sense the ball position was wrapped by hand

around the cylinder. This took approximately four hours and several sittings. Due

to a varying concentration level, the spacing of the windings is not uniform. A rough

measurement of the actual ball position versus the sensed ball position is shown in

Figure 9.18. The piecewise-linear approximation to this function shown as a dotted

line is su�cient to explain the e�ects on the control performance we will observe.

This approximation reveals closely-spaced windings at the very beginning, medium-

spaced windings in the middle, and an area of particularly widely-spaced windings

towards the end. (Points 1, 2, and 3 marked on the diagram will be set points |

see Experiment A.)

If we gave the actual ball position, instead of the position error, as the input to

the controller, the nonlinearity of the ball sensor would be unimportant. It is only

important because it causes a di�erence between the responses at di�erent set points

to error.

3. Ball position noise

As the ball rolls, the current which can be driven through it varies. In addition,

at times it momentarily loses electrical contact with one of the beams, causing
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Figure 9.18: Nonlinearity of ball position sensor

`dropouts'. Even with a sound averaging scheme, ignoring dropouts, there is a

signi�cant amount of noise in the ball position.

In addition, the voltage over the ball sensor goes as

Vball =
Rball

Rball + 120

Vsupply

(The 120
 resistor is used to restrict the maximum current through the circuit.)

Thus as Rball goes from zero to its maximum (300
) roughly linearly with the ball

position, Vball increases sharply and then approaches its maximum asymptotically.

This means that at large ball position, there is only a tiny di�erence in the voltage

at slightly di�erent positions. This translates into noise which grows worse at a large

ball position. For this reason, precision in position at large ball position is virtually

impossible.

4. Beam sag

When the ball is nearer the end of the beam with the servo attached, the beam sags

slightly under the weight of the ball. The precise control of the ball position depends

strongly upon a constant balanced position of the beam at zero output. This makes

controlling the ball at a large ball position even more di�cult.

5. Beam angle noise

The beam angle is controlled by a servo, which is positioned by a PWM pulse

from the controlling computer. The width of this pulse is between one and three

milliseconds. Due to the digital nature of the control and the low time resolution of

counters available at this frequency, the output width tends to jump back and forth

between two discrete values of pulse width. This results in noise in the controlled

beam angle, causing random movement of the ball.
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The loop time of our controller will be 50 milliseconds. Again, our controller will take

as input the error from the desired set point

E(t) = r(t)� s

and the change in error9 (referred to as D-error).

_E(t) = E(t)�E(t� 1)

A schematic of this control setup is shown in Figure 9.19.

For these experiments, the performance matrix was designed in the same way as for

the simulations (Figure 9.8), but with di�erent parameters. These parameters may be

found in Section A.2.

Experiment A: Three Set Points

Similar to our �rst simulation, we will designate three set points s on the beam: at

s1 = 50, s2 = 150, and s3 = 250.10 Due to the nonlinearity of the ball position sensor, we

should expect some anomalies in the control response. Due to the closely-spaced windings

near s1, the ball seems to be moving farther (i.e., over more windings) than at the other

set points. Thus since a disproportionate amount of time is spent training for stability at

set point s2 (this happens because s2 is the only set point which the ball can overshoot

signi�cantly without running o� the end of the beam), we should expect oscillation at s1.

9
This is only di�erent by the scale factor 1=Tloop from the error velocity and requires no 
oating point

calculations.
10
Ball position is reported in sensor units, approximately 11 units per inch.
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For the same reason, when the ball approaches s1, the system will believe it has suddenly

sped up and attempt to slow its progress. Conversely, due to the widely-spaced windings

between set points two and three, the ball moving at a constant speed will seem to be

moving slower (i.e., over less windings); thus the controller will try to speed it up going

into this region and slow it down on exit.

We begin learning with the output matrix set to all zero (such that the default output

is to balance the beam). We train the system, as we did the simulated system, by changing

the set point between s1; s2; and s3 and waiting for the ball to stop. After �ve minutes of

training, the system is following the input space paths shown in Figure 9.20(a). The ball

has barely enough speed to reach each of the set points, taking more than �ve seconds

to reach the next set point; the controller will often lose the ball o� one end of the

beam because it doesn't catch it fast enough. This controller has barely overcome static

friction. After another two minutes of training, the controller has reached its optimum11

performance (Figure 9.20(b)). This controller exhibits some overshoot and oscillation,

but will not lose the ball o� either end of the beam at any time, and overcomes the

nonlinearity of the ball position sensor quite nicely. If we continue training this controller

for only three minutes more, we see increased speed and oscillation (Figure 9.20(c)) as the

system attempts to rigorously follow the performance criterion. The performance of the

best controller as the set points are changed is plotted in Figure 9.21.

The control surface of the best controller is shown in Figure 9.22. The gentle slope

near zero error gives stability about the set point. Note the wave-like shape at large error

which speeds up the ball and then slows it down near zero error. Overall, the function

bears a remarkable similarity to that of Figure 9.10.

In the �rst few minutes of training described above, the controller spends a lot of time

�guring out just how to get the ball moving over the static friction barrier. Let us design

a simple initial fuzzy controller to get the ball moving in an attempt to reduce training

time. Such a controller is shown in Figure 9.23. The controller includes rules which will

move the ball to the set point with a larger response for a larger error, and some simple

rules to slow the ball down near the set point. It is just su�cient to get the ball moving

in the right direction. To proceed, we convert this fuzzy controller into a table-based

controller and initialize our output matrix with these values. An example of the abysmal

performance of the initial table-based controller is shown in Figure 9.24(a). After three

minutes of training (less than half the time of the best controller with no head start), we

have reached the performance shown in Figure 9.24(b). This system gets the ball to the set

point extremely quickly and exhibits a tightly damped oscillation. Taking this controller

and learning a fuzzy controller from it results in a second fuzzy system capable of solving

the problem (Figure 9.25). The performance of the fuzzy controller with uncompressed

rules is shown in Figure 9.26(a), and with compressed rules in Figure 9.26(b). Again,

we sacri�ce some control accuracy for simplicity, but even the controller with compressed

rules is su�cient to solve the problem quite satisfyingly.

It is interesting to compare the best controller learned from nothing with the best

controller learned from a fuzzy head start. The best controller learned from nothing has

rather slow and steady performance, reaching the set point with a minimum of oscillation.

11
This controller is optimum only in the sense that earlier in training, the controller would be unable to

stop the ball at the set point for a large initial error, and later in training the controller would be unable

to maintain the ball at the set point without tremendous oscillation. It would certainly be possible to

specify a performance criterion in terms of rise time, overshoot, and oscillation to determine exactly when

in learning the controller actually reaches its `best' performance.
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Figure 9.20: Input space paths of actual system while learning
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Figure 9.21: Well-trained performance

The best controller learned with a fuzzy head start reaches the set point quickly, and

oscillates quickly into the set point. This is because the controller learned from nothing

has approached the desired input space response from a slower speed than desired, while

the fuzzy head start controller approached the desired input space response from a higher

speed than desired.

Experiment B: Sinusoidal Set Point

Our �nal experiment is that of tracking a sinusoid

s(t) =
s3 + s1

2
+
s3 � s1

2
sin(2�

t

T
)

This sinusoid moves between s1 and s3 of the previous experiment. This experiment is

much harder in a real system than in simulation, due to static friction. We began with the

learned controller of Figure 9.24(b), which was given a fuzzy head start. This controller

obtains the best performance we have seen. The physical system cannot learn to track

a sinusoid of period T = 5 seconds; the speed required exceeds that which it is capable

of controlling. By training this controller for 30 seconds on a sinusoid of period T = 10

seconds, we obtained the performance shown in Figure 9.27. At T = 10s, the ball is at

a comfortable rolling speed most of the time (average speed 5.2 in/s) and only exhibits

oscillation at low ball position due to the ball sensor nonlinearity. At T = 20s, the required

ball speed is so low (average speed 2.6 in/s) that static friction begins to stop the ball

periodically, requiring the system to provide a large output to get it moving again. At

T = 30s, static friction has a strong hold on the ball (average speed 1.7 in/s); the system

must constantly restart it. These results would improve if the maximum angular velocity

provided by the servo were increased, so the ball could be restarted more sharply.

A fuzzy controller was learned from this table-based controller; it is shown in Figure

9.28 and is virtually identical to that of Figure 9.25. Its performance (with compressed
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Figure 9.22: Control surface of best controller

rules) is shown in Figure 9.29. As expected, we see increased oscillation and overall a less

precise response.

9.2.4 Summary

Simulation A showed us how the ESOC algorithm performs on a highly non-linear

problem by demonstrating the input space response of an undertrained, well-trained, and

overtrained controller. This gives us insight into the responses of the actual system, which

are not as well-de�ned. We observed that the controllers resulting from the learning algo-

rithm are quite nonlinear. This experiment also showed us that the fuzzy approximation

to the table-based system does not perform quite as well, and that the simpli�ed fuzzy

system does not perform quite as well as the original fuzzy system.

Simulation B demonstrated learning to track a very fast sinusoid. This standard

problem with the ball-and-beam system was solved easily and with very small error. The

simpli�ed fuzzy approximation to this controller was shown to operate, but with signi�-

cantly more transient oscillation and steady-state error.

Experiment A showed similar performance to that of Simulation A on actual hard-

ware. The undertrained, well-trained, and over-trained controllers are not as apparently

di�erent. By giving the system a very simple fuzzy system as a head start, we were able

to cut the training time in half. The resulting controller was somewhat di�erent from the

controller learned from nothing. Again, the fuzzy system resulting from an approximation

of the learned table-based controller exhibits inferior, but still satisfactory, performance.

Experiment B demonstrated learning to track a sinusoid with actual hardware. Static
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Figure 9.24: Learning with a fuzzy head start
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Figure 9.26: Learned fuzzy controller performance
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Figure 9.27: Performance of learned controller for sinusoid-tracking
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friction and the relatively slow response of the hardware combined to make this a di�cult

experiment. The fuzzy approximation to the learned table-based controller exhibits more

oscillation and a less precise response.

9.2.5 Comments and Conclusions

The ball-and-beam experiments we have shown verify the e�ectiveness of the loop-back

approach we have presented for simple control problems. It should be clear that the

adaptation algorithm used is not important to the approach in general. For a more

complex problem, the ESOC algorithm would prove more di�cult to use, due to the

manual choice of the performance matrix. If more computing power were available, it

would be possible to use a more robust adaptation algorithm to make this approach even

more attractive.

The parameters we set for learning fuzzy controllers (Section A.1) determined the

complexity and the precision of the fuzzy controllers we have shown. We intended to show

that a simple fuzzy controller can approximate a complex control function and obtain

adequate control performance. However, the merely adequate performance shown for fuzzy

controllers in this chapter should not be construed to imply that they cannot function any

better. Using the methods we have presented in Chapter 8, it is possible to represent our

table-based systems to arbitrary precision. If better control performance is desired, the

number of membership functions for each input can be increased, at the cost of a more

complex fuzzy controller.

As the number of inputs increases, the di�culty of �nding an e�ective table-based

controller will also increase. Due to the geometry of high-dimensional spaces, it will

be necessary to specify a larger and larger number of grid points in each dimension to

encompass a function over the space. This will also be true of the number of membership

functions for each input to the fuzzy system. However, these techniques will tend to scale

with dimension better than other function representation techniques which do not have

an independent representation for each dimension, including radial basis functions and

memory-based systems.

One important comment to make about learned controllers is that they only know

what they have been taught. For example, a controller trained on the three set point

problem would likely not work for the sinusoid tracking problem, because there will be

many places along the beam where the controller has never seen the ball stop. Conversely,

a controller trained on the sinusoid tracking problem would likely not work for the three

set point problem, because it has little experience with large initial errors. This is not to

say that you could not train a controller to do either problem (the controller in Figure 9.28

began as a three set point controller and was trained additionally for sinusoid tracking),

but it is a fact that one should be aware of in using learned controllers.

It is a testament to the power of nonlinear control systems that we are able to demon-

strate actual performance of a ball-and-beam system while only sampling our inputs at

20Hz. A linearized controller for this problem would need to sample at hundreds or thou-

sands of Hertz to maintain the problem within the linearizable region.

On a philosophical point, although we claim to give the controller prior information

about the control system only through our initial fuzzy rule set, there is actually quite

a lot of information about the system embedded in the performance matrix of ESOC.

However, the particular choice of an adaptive learning algorithm is not part of the loop-

back approach we have suggested. To provide the most general implementation of this
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system, a reinforcement learning controller which receives only a binary success/fail signal

on each experiment could be used, such as [BSA83].

A �nal comment that should be made is that the systems we have proposed for control

are still in the very early stages of research. The controllers learned are not always entirely

robust | while they will usually succeed, sometimes they will encounter a condition they

are not prepared for. Neither are they provably stable. However, they can sometimes

cleanly solve problems which control theory can at best make an approximation to. There

is much that is not well understood, and much left to be done, but learning control systems

is clearly interesting.
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Chapter 10

Future Work

In this �nal chapter, we discuss possible improvements to the fuzzy function approximator

we have presented and its application to control.

10.1 The Function Approximator

10.1.1 Improvements to the MF Learning Algorithm

There are a number of di�culties with the membership function learning algorithm which

need to be looked at.

The choice of a planar approximation to the data as a starting place is seemingly

arbitrary. While this does lead to the point of maximum error being the point which will

minimize the total RMS error the most, it often turns out that these initial membership

functions can be removed altogether without increasing the error.1 However, starting from

nothing often leads to the choice of points which start at the greatest value of the function

and work down towards zero { this is not what we want. Perhaps a better starting point

than either of these choices can be found.

There are too many ad hoc parameters in the algorithm: they include the `already-

there' thresholds for each variable and the `too-far' threshold for the output variable.

While the values that have been chosen manually seem to be e�ective for a number of

di�erent function approximation problems, these parameters should really be chosen au-

tomatically.

Using a �xed percentage of the range of an input variable for the `already-there' thresh-

old causes problems when the dynamic range of an input is very large. To avoid getting

two membership functions at 300.0 and 301.5, we must set the threshold larger than 1.5.

However, it may be necessary to have this precision near zero in order to solve the control

problem. Perhaps some form of nonlinearity could be introduced.

Finally, the choice of the error weighting function for control systems is crucial to

learning just the part of the data that is important to your problem, but we have no

insight on the choice of this parameter other than what we have stated.

10.1.2 Rule Weights

In the computational network described in Section 8.4, there are links from the rule nodes

to the output nodes which have unit weight. It seems obvious that some performance

improvement might be obtained by modifying these weights to modulate the e�ect of each

rule on the output. We have experimented with backpropagating these weights to reduce

the error as much as possible after learning the network as described. Unfortunately, this

process is extremely time-consuming and resulted in little performance improvement.

1
We experimented with `shrinking' the membership functions after learning them by testing the error

and decided it was too time-consuming to be worthwhile.
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10.1.3 Rotating the Axes

Since we introduced the axis-parallel problem in Section 2.1, it must have been obvious

to the reader that a good way to reduce this di�culty for a function approximator would

be to include before its inputs a network which rotates the input axes in such a way as

to maximize their predictive power. Principal component analysis can provide such a

rotational transform, and there is even a neural network which can do such a calculation

[BH89]. This rotational transform would lead to inputs which could describe the output

in terms of the minimum number of fuzzy rules. However, if one includes this network

before the inputs of the function approximator, what semantics is one to assign to the

inputs? They will have no easily understood meaning with relation to the physical world

from which they came. We have defeated the very purpose of our system, and we may as

well use a backpropagation network for all the understandability we have. It seems as if

the very ability for which we have valued fuzzy systems has been lost.

10.1.4 Approximation with Noise

As stated in Section 6.1, we have assumed that the input data is noiseless. For the

control examples to which we have applied our system, this is a valid assumption since

each example is coming from a good control system. However, what if we wanted to

apply our fuzzy learning paradigm to examples which did contain noise? Immediately the

membership function learning scheme, which picks the point of maximum error to add

the next membership function, breaks down since there may be outliers which really need

not be approximated. In order to detect such outliers, some assumptions about the data

might be made; perhaps a maximum gradient condition would be e�ective.

10.1.5 Multi-Layered Rule Networks

The systems which we have discussed make rules about the inputs which are directly used

to calculate the output. In control systems theory, there is the concept of an observer

[O'R83]: an intermediate calculation made from the inputs which is then used to calculate

the output. An analog to this in fuzzy control would be a layer of rules which do not draw

conclusions about the output, but about an intermediate variable.

10.1.6 The Use of the L-measure in Classi�cation

Since the J-measure does not seem to be the best simplicity criterion from any theoretical

viewpoint, it may be that use of the L-measure will result in superior performance on

some data sets. The L-measure could be used as suggested in Section 8.3.2: start with

the alpha parameter very high and decrease it until the classi�cation percentage on the

training set reaches the Bayes rate. At this point, you should have the rule set which will

generalize the best to the test set.

10.1.7 The Use of Lateral Weights in Classi�cation

Rather than pruning rules for independence, perhaps some version of the lateral inhibitory

weights could be used for classi�cation. A version of this has been tried in the past, with

mixed success. The bene�ts of this would be to allow greater redundancy and save rule

pruning time.
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10.2 Application to Control

10.2.1 A Better Compression Criterion

As a metric of the error caused by our rule compression, we have used the percentage

classi�cation error that SQUEEZE gets on our original cell-based rule set. This is some-

what misleading, since even with every original cell-based rule correctly classi�ed, there

can still be some degradation of the control performance. A better metric of compression

error would take into account the di�erence in the function approximated by the uncom-

pressed and compressed rules and how this di�erence might a�ect control performance.

10.2.2 Connection to Control Theory

There are a number of papers citing similar performance on the sinusoid-tracking problem

with the same simulated ball-and-beam system we have presented [Cas90, Tee91, HSK92,

HR92]. It would be interesting to determine if the learning system has discovered a

strategy similar to one of those suggested by these authors.

10.2.3 Dependent Rule Inference Scheme

The fact that there is any di�erence at all between the performance of the compressed

and uncompressed rule sets shown in Section 9.2 shows that the dependent rule inference

scheme we have suggested does not work perfectly. The rule sets shown were compressed

with no error (see Section A.1) from the original rule set. Looking at the rule tables, it

can be seen that not a single rule has been lost. However, the surfaces created by the

two rule sets are di�erent. The trouble seems to happen when two �rst-order rules with

the same conclusion overlap. In this case, there is twice as much weight for their mutual

conclusion as there would be in the uncompressed rule set.
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Appendix A

Details of Ball-and-Beam

Experimentation

A.1 Function Approximation Parameters

The same parameters were used to learn all of the fuzzy controllers shown in Section 9.2

of the thesis.

To obtain the simplest possible fuzzy controllers, the RMS error maximum was set

to zero and the number of membership functions varied by hand. Nine memberships for

both error and derror was chosen after some experimentation. The examples were given

a minimum weight M = 1� 10�10 (see Section 8.2.2). The output membership functions

were allowed to be no more than 1.0% of the output range from the actual output value,

and the input membership functions were not allowed to be closer than 2.5% of their

range.

The rules were compressed by varying the compression parameter � starting at 100 and

working down in steps of 5 until the �rst rule prediction error was seen. This step is quite

large, but resulted in a fast solution. Each compressed rule set shown is as compressed

as it can be with absolutely no error in predicting the original cell-based rule set, to the

stated granularity of �.

A.2 ESOC Parameters

Recalling the operation of ESOC, a �xed delay is used to attribute the current state to a

former state's output. This delay was determined by looking at the impulse response of

the system to a large number of input levels. The quick response of the hardware allowed

us to set this parameter to one sample, or 50ms.

The following describes the parameters necessary to specify the output matrix and

performance matrix for each experiment. The value of each parameter used for each

experiment is listed at the end of this appendix.

Maxima

In order to construct the output matrix, it is necessary to choose a maximum value

for each of the inputs. Let the value of the maximum for input j be called Mj .

Grid Size

Let the size of the grid for input j be called Sj. Sj must be odd, so that there is a

point at zero.

Grid Spacing

The grids used for the output matrix and performance matrix were nonlinearly

spaced, to allow more precision near zero. For attribute j, the formula used for

placement of the grid points is as follows:

p(i; j) =Mjsgn(i)
1� e��ji=sj

1� e��
(�s � i � s)
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where s = bSj=2c and i is an integer.

The Performance Matrix

Refer to Figure 9.8. The performance matrix value at each grid point is calculated

as a gain parameter G times the Euclidean distance to the nearest constraint line.

The slope S and the error parameters Efar and Enear de�ne these constraints.

A.2.1 Simulations A and B

� Grid:

Maximum M Grid Size S Nonlinearity �

Error 1.0m 15 5.0

D-Error 1.0m/s 15 3.0

� Performance Matrix:

Enear = 0:0m Efar = 0:33m S = 1:5

G = 0:02

A.2.2 Experiments A and B

� Grid:1

Maximum M Grid Size S Nonlinearity �

Error 250.0su 15 5.0

D-Error 10su/iteration 15 3.0

� Performance Matrix:

Enear = 10:0su Efar = 100:0su S = 0:05

G = 1:5

1
su = sensor units
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