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Abstract

The low-level representation of visual motion utilized by bi-

ological organisms from insects to primates is fundamentally

di�erent from that used in conventional computer vision sys-

tems. Rather than an optical 
ow vector �eld, banks of non-

linear spatio-temporal frequency tuned �lters are used, giv-

ing rise to a representation which naturally supports trans-

parent motion and shear at occlusion boundaries, and which

facilitates the solution of the aperture problem. Because of

the amount of parallel computation required to detect mo-

tion in this fashion, a biological representation of motion

requires eÆcient implementation of elementary motion de-

tectors. In this paper we describe the low-power continuous-

time analog VLSI implementation of a biologically-inspired

visual motion sensor. This sensor, based on the motion en-

ergy algorithm of Adelson and Bergen, is a simple hardware

model of the motion response of a primate cortical complex

cell but can also be shown to be equivalent to the Reichardt

model of insect motion detection. Characterization results

show that this spatio-temporal frequency tuned sensor can

discriminate the direction of motion of a sinusoidal grating

down to less than 5% contrast, and over more than an order

of magnitude in velocity. In addition to providing a real-

time hardware biological model for investigation of spatial

motion integration algorithms, this sensor will be a funda-

mental building block for experimentation into biologically-

inspired visual navigation architectures for underwater, air-

borne, and land-based autonomous robots.

1 INTRODUCTION

The architecture of biological visual systems has some-

thing to teach conventional engineering about system-

level design. Representations of visual modalities in-

cluding depth, motion, color, and form are quite unlike

those employed by conventional computer vision sys-

tems. And yet biological organisms trivially accomplish

visual tasks such as object recognition, obstacle avoid-

ance, and target tracking which continue to challenge

arti�cial systems. By building arti�cial vision systems

true to the representations used by neurobiology, we

may be able to suggest testable hypotheses as to how

biological systems accomplish these tasks, while at the

same time producing novel highly capable arti�cial sys-

tems. However, the primary strategy used by neurobi-

ology is massively parallel processing. In order to make

e�ective use of such a strategy in arti�cial systems, an

eÆcient parallel implementation must be conceived.

This paper describes an analog VLSI hardware visual

motion sensor based on the Adelson-Bergen motion en-

ergy model [1], which is often cited as a basic model of

primate cortical complex cells [2, 3, 4]. This model can

be shown to be equivalent to the Reichardt [5] model of

insect motion detection, and thus is applicable over a

wide range of taxa. The implementation is continuous

in time, like the biological system that it models. Be-

cause of the use of analog circuitry with subthreshold

MOS transistors, the power consumption of this im-

plementation is very low. The sensor is designed to be

fabricated in parallel arrays, and thus is ideal for exper-

imentation with biological representations of motion.

2 RELATED WORK

Because low-level visual motion processing is very well

matched to continuous-time fully parallel focal plane

arrays, a large number of integrated sensors of this type

have been fabricated [6, 7, 8, 9, 10, 11, 12, 13] based on

a variety of algorithms. Etienne-Cummings et al. [14]

have implemented a large-scale version of the Adelson-

Bergen algorithm on a general-purpose analog neural

computer.

The most closely related sensors to the present work

are those of Deutschmann et al. [12] and Harrison et al.

[11]. While the sensor of Deutschmann et al. is based

on a multiplication of temporal and spatial derivatives,

and the sensor of Harrison et al. is based on an elab-

orated version of the Reichardt model of 
y motion

detection, both sensors are spatio-temporal frequency

tuned, based almost purely on analog circuitry, and

have the same basic response properties shown in this



paper. However, both sensors are quite di�erent from

the sensor presented here both in algorithm and imple-

mentation, and thus may have di�erent advantages and

disadvantages.

3 ALGORITHM

3.1 Canonical Form

In a seminal 1985 paper [1], Adelson and Bergen pub-

lished a model of the activity of a primate complex cell

in response to a motion stimulus. They showed how

it was possible to build a direction-selective unit by

combining linear quadrature �lters with a nonlineari-

ty. Such models are responsive to the Fourier energy

in a band of spatio-temporal frequency, independent of

the phase of the stimulus, and are thus referred to as

motion energy models.

The one-dimensional model, shown in Figure 1, is con-

structed by combining the responses of four simple-cell

models. The spatial impulse responses of each quadra-

ture pair of simple cells are modeled as Gabor functions

with identical spatial receptive �elds but quadrature

relative phase. Because visual motion involves changes

in both space and time, two temporal impulse responses

must be considered, as well. Adelson and Bergen mod-

eled these as second and third derivatives of Gaussians,

but the primary criterion is that the temporal respons-

es have quadrature phase at the temporal frequency of

interest.

In order to compute motion energy, it is necessary to

combine each spatial impulse response with both tem-

poral impulse responses as shown in Figure 1. By mak-

ing sums and di�erences of linear separable spatiotem-

poral �lters and squaring their outputs, it is possible to

synthesize a nonseparable motion energy �lter.

3.2 Modi�ed Form

In order to implement this algorithm in analog VLSI

hardware, it was necessary to modify the canonical al-

gorithm somewhat.

In the hardware implementation, the spatial quadra-

ture pair of �lters is approximated by using neighbor-

ing photoreceptors, each of which has an antagonistic

center-surround spatial impulse response very similar

to a Gabor function. The width of these spatial impulse

responses can be adjusted to approximate the quadra-
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Figure 1: Adelson-Bergen motion energy model. Each of

a quadrature pair of spatial �lters (at the same spatial lo-

cation) is �ltered with a quadrature pair of temporal �l-

ters. By combining these linear spatiotemporal �lters in

the correct order and squaring their outputs, it is possible

to synthesize a nonseparable motion energy �lter.

ture Gabor functions used by Adelson and Bergen. In

fact, in this implementation the Gabor function shape

is not necessary for direction-selectivity as long as the

DC value of the intensity signal is removed. The spat-

ial frequency tuning obtained is actually a result of the

phase relationship caused by the photoreceptor spacing.

The simplest possible pair of temporal �lters required

to obtain direction-selectivity would create a phase dif-

ference of as close to 90 degrees as possible at the tem-

poral frequency of interest. In the current implemen-

tation, a single-pole lowpass �lter is used to create the

required phase delay. That is, one temporal pathway

is un�ltered, and the other passes through a temporal

lowpass �lter.

Computing the mathematical square of a signal may

be considered as recti�cation followed by an expansive

nonlinearity. In this implementation, we have employed

the recti�cation but neglected the expansive nonlinear-

ity, replacing the square in Figure 1 with an absolute

value.

3.3 Expected Response

Taking into account the modi�ed Adelson-Bergen algo-

rithm, it is possible to derive the output of the sensor

in response to a moving sinusoidal grating. If the in-

put is taken to be a two-dimensional sinusoidal grating

with maximum amplitude A, contrast C, spatial fre-



quency fs, orientation � relative to the sensor preferred
orientation, and temporal frequency ft,

I(x; y; t) = A(1+C sin(2�ft �t+2�fs(cos � �x+sin � �y)))

then the output of an X-oriented sensor with photore-

ceptor separation Æ can be computed as

A2P (ft)
2C2

� sin(2�fsÆ cos �) � H(ft) � sin�t(ft)

where P (ft) is the magnitude of the photoreceptor tem-
poral frequency response, and H(ft) and �t(ft) are re-
spectively the magnitude and phase of the lowpass �l-

ter's response. The squaring operation has been used

instead of the absolute value in order to obtain a closed-

form solution.

From this formula we expect a square-law response to

contrast variation and a sinusoidal response to the vari-

ation of stimulus orientation, which gives a large posi-

tive response for the preferred orientation, a large nega-

tive response for the null orientation, and zero respons-

es for orthogonal orientations.

We expect the spatial frequency tuning to peak at

the frequency at which 2�fsÆ cos � = �=2. Expressing

spatial frequency in cycles/pixel this can be written

fs cos � = 0:25 cycles/pixel. Because of the Nyquist

sampling theorem, we expect the sensor to spatially

alias at fs = 0:5 cycles/pixel.

The temporal frequency tuning can be written from the

expression above as P (ft)
2

� H(ft) � sin(�t(ft)). For a

single-pole lowpass �lter, the product of magnitude and

sine of phase can be shown to be symmetric in log fre-

quency, and peak at the cuto� (3 dB) frequency of the

lowpass �lter. Because the photoreceptor frequency re-

sponse has much wider bandwidth than the rest of the

expression, it will form an envelope for temporal fre-

quency response as we vary the temporal tuning. Thus

we expect the temporal frequency tuning to peak at

the cuto� frequency of the lowpass �lter and show an

envelope corresponding to the photoreceptor temporal

frequency tuning.

4 HARDWARE ARCHITECTURE

The hardware implementation of the Adelson-Bergen

algorithm is diagrammed in Figure 2. All of the cir-

cuitry shown operates the MOSFETs below threshold

to make use of the exponential current-voltage relation-

ship. The spatial �lters are implemented by using Del-

br�uck adaptive photoreceptors [15] coupled with a Liu-

Boahen di�user network [16] (shown in Figure 3(a)),
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Figure 2: Analog circuit implementation of Adelson-Bergen

motion energy model. Spatial �ltering of illumination sig-

nals is accomplished with adaptive photoreceptors and a

di�user network. Temporal �ltering is done with a current-

mode lowpass �lter. Sums and di�erences are easily accom-

plished in current mode.

which results in an antagonistic center-surround spatial

impulse response very similar to a Gabor function. The

width of this spatial impulse response can be adjusted

by the use of biases. The output of the photoreceptor

is taken as a current, in order to use current-mode com-

putation for the rest of the circuit. Current-mode com-

putation was chosen due to the large number of sums

and di�erences required to implement the desired algo-

rithm. One disadvantage of current-mode computation

is the necessity to copy (mirror) a current in order to

use it more than once in the computation. Note that

the photoreceptor itself has a bandpass temporal char-

acteristic which limits the temporal frequency response

of the motion circuit as a whole.

The temporal current-mode lowpass �lter is implement-

ed as shown in Figure 3(b). Neglecting the Early e�ect,

the current signal coming into the circuit is reduced

by a multiplicative factor of e�Vtau=VT where VT is the

thermal voltage. The signal is then passed through a

current mirror with capacitor C, which in the small-

signal approximation is a single-pole lowpass �lter with

time constant

� =
Cro

1 + gmro

in seconds/radian where ro is the small-signal output

resistance of the (nominally identical) current mirror

transistors, and gm is their transconductance. Clearly

this time constant depends on the DC current level seen

by the current mirror, and thus Vtau controls the time

constant. Again neglecting the Early e�ect, the �nal

output mirror multiplies the �ltered signal by eVtau=VT ,
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Figure 3: Circuits used in the implementation. (a) Adaptive photoreceptor: this circuit transduces light into a current, and

uses di�users to create an antagonistic center-surround receptive �eld. (b) Current-mode lowpass �lter: the input current is

reduced in magnitude, processed through a `slow' current mirror, and return to its original magnitude. (c) Absolute value

circuit: a bidirectional input results in a recti�ed current at the output.

returning it to its original amplitude range. This circuit

is clearly not a linear �lter for large signals, but is quite

compact and suÆces for our application.

Due to the current-mode nature of the computation,

the sums shown in Figure 2 are accomplished by wiring

together the appropriate signals. Di�erences are ac-

complished by the use of two-transistor current mir-

rors. The current-mode absolute value circuit is shown

in Figure 3(c), and was inspired by the above-threshold

circuits of Bult and Wallinga [17]. This circuit takes a

bidirectional current input. Currents going into the

circuit are passed through the current mirror (revers-

ing their direction) and coupled to the output current.

Currents leaving the circuit are pulled directly from the

output current through the Vcasn transistor.

Directly before the computation of the nonlinearity, it

is essential that the signals have no DC component for

maximum direction selectivity. In this circuit, it was

necessary to subtract o� manually-tuned o�set currents

to accomplish this task, shown in Figure 2 as I1,I23,
and I4. These compensation currents required a single

transistor each with an o�-chip bias.

In total, the motion sensor implementation required 41

transistors and 3 capacitors, not including scanout cir-

cuitry. At the bias settings used for data collection, the

pixel circuitry draws less than 32 �A at 5 volts.

5 CHARACTERIZATION RESULTS

This section details the characterization of a single mo-

tion sensor. Bias settings are held constant for all ex-

periments unless otherwise stated. Although the sensor

directly outputs a current, output quantities are quoted

in millivolts from a current sense ampli�er with a 4.7

megohm feedback resistor. Output voltages are aver-

aged over 10 temporal periods of the stimulus to remove

the phase dependence of the sensor. When a parame-

ter is swept, all other parameters are held constant at

a standard value. All experiments were performed by

presenting computer-generated sinusoidal grating stim-

uli on an LCD screen.

Figure 4 shows the output of the sensor for four stim-

ulus conditions: no input, orthogonal sinusoid grat-

ing, preferred and null direction sinusoid gratings. The

raw output of the sensor is plotted lightly in the back-

ground, and shows large phase-dependent oscillations.

The �ltered output of the sensor is plotted boldly in

the foreground and shows that the output for no stim-

ulus and an orthogonal stimulus have approximately

the same average value, and that preferred and null

direction stimuli can be clearly resolved.

Figure 6 shows the spatio-temporal frequency tuning of

the sensor. In (a), we see as expected that the strongest

response is at a particular combination of spatial and

temporal frequency. The sensor is direction selective

because of the di�erence in its response to positive and

negative temporal frequencies. Parts (b) and (c) show

sections through the plot of part (a), but with points

logarithmically spaced. The spatial frequency sweep

of (b) shows a peak at 0.15 cycles/pixel and the on-

set of spatial aliasing (reporting the wrong direction)

at approximately 0.4 cycles/pixel. While the ideal tun-

ing would be at 0.25 cycles/pixel with aliasing at 0.5

cycles/pixel, the relative delay between the two ana-

log photoreceptor circuits combined by the sensor shifts

these frequencies in the real circuit. This relative delay
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Figure 4: Output of the motion sensor. Raw output is

shown lightly in the background, �ltered output boldly in

the foreground. For the interval 0-2 seconds, no stimulus is

presented. Flicker response to 
uorescent lighting is seen.

Between 2-4 seconds, a sinusoidal stimulus moving orthog-

onal to the sensor orientation is presented. Between 4-6

and 6-8 seconds respectively, a preferred and null direction

sinusoidal stimulus is presented.

elongates the spatio-temporal frequency tuning shown

in part (a), stretching it along the constant-velocity di-

rection. The temporal frequency plot of (c) shows a

peak at 6 Hz. With a �xed spatial frequency, the sen-

sor is responsive to a velocity range of more than one

order of magnitude.

Figure 5 shows the response of the sensor as the orienta-

tion of the stimulus is varied 360 degrees. The expected

sinusoid shape is seen, with an asymmetry due to mis-

match in the circuitry. Figure 7 shows the range of tem-

poral frequency tuning that can be achieved by varying

the bias Vtau. As predicted, the envelope of this set

of curves is the photoreceptor frequency response. The

tuning frequency can be varied over the entire range

allowed by the photoreceptor. The response to varying

contrast for both preferred and null directions of mo-

tion is shown in Figure 8. We see the expected square-

law response to contrast except at very high contrasts,

where the curve saturates. It is possible to distinguish

the direction of motion even at contrasts less than 5%.

6 DISCUSSION

We have described and characterized a novel spatio-

temporal frequency tuned analog VLSI motion sensor.

The sensor as fabricated responds to optimal spatial

frequencies over a velocity range of more than an or-

0 50 100 150 200 250 300 350
−150

−100

−50

0

50

100

150

200

250

Orientation (degrees)

M
ea

n 
ou

tp
ut

 (
m

V
)

Figure 5: Orientation sweep. A sinusoidal stimulus is pre-

sented at varying directions relative to the motion sensor,

which is optimally oriented for a stimulus at 90 degrees.

der of magnitude, and can discriminate direction down

to less than 5% contrast. The spatial frequency tun-

ing is determined by the optics used to focus an image

onto the chip, and can be varied over a factor of at

least a decade. The temporal frequency tuning can be

controlled by bias settings over a range of more than

a decade, limited by the photoreceptor frequency re-

sponse.

While the success of the �rst implementation of this

sensor proves the applicability of the algorithm used,

there are a number of drawbacks to the current circuit.

The worst of these is the necessity to compensate for

the DC value of the sums before they enter the absolute

value stage. These compensating biases are very sen-

sitive, and in the current implementation the optimal

bias settings for neighboring pixels are quite di�erent.

These biases also make the circuit sensitive to temper-

ature variations and variations in the average illumi-

nation seen by the photoreceptors. A second problem

is in the distribution of currents between pixels, which

requires multiple current mirrors to copy current-mode

signals. This circuit has already been redesigned and

submitted for fabrication with two major changes. The

�rst is the use of a voltage-mode lowpass �lter, which al-

lows distribution of voltages rather than currents. The

second and most crucial is the adoption of a comple-

mentary current representation of each signal, in which

two currents represent each signal and can be subtract-

ed to obtain the full signed quantity represented. In

this new version, no manual compensation will be re-

quired.

Because this motion sensor is an oriented tuned spatio-
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Figure 6: Spatio-temporal frequency tuning of the sensor. (a) Spatio-temporal frequency plot: light colors indicate positive

average response and dark colors indicate negative. (b) Spatial frequency sweep: note the onset of spatial aliasing. (c)

Temporal frequency sweep.

temporal �lter, it cannot respond to a wide range of

spatial frequencies, orientations or velocities, and thus

must be considered as part of a �lter bank approach

to system-level visual motion processing. Design is un-

derway to incorporate this sensor into a biologically-

inspired multi-chip implementation with a single retina

front end and multiple parallel motion-sensitive �lters.

This multi-chip motion processing system will be high-

ly sensitive to motion over a wide range of stimulus

parameters.
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