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ABSTRACT 

 Towards the development of a neuroprosthetic system through which paralyzed 
individuals with C5 or C6 spinal chord injuries regain full functional control of their 
limbs, a means of estimating muscle activity level from desired kinematic values is 
required.  This thesis presents a method of performing this estimation.  It uses a priori 
distribution functions and Bayes’ theorem to find the a posteriori distribution of possible 
muscle activity levels given a specified set of kinematic values.  The a priori distribution 
functions were estimated with data taken during a training task.  The system was tested 
by comparing predicted to actual muscle activity levels during seven different tasks, none 
of which was used in establishing the a priori distribution functions.  The system worked 
well with the overall RMS error of 6.1% across all muscles and all tasks. 
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Chapter 1: Introduction 

 For more than 20 years, physiologists have been working to improve the quality 
of life for paralyzed individuals through the use of functional electrical stimulation which 
involves artificial stimulation of muscles in order to produce limb movement.  Today, the 
best systems are still extremely limited in their ability to produce natural movement.  
Functional electrical stimulation has the potential to be of great benefit to paralyzed 
individuals if the control interface can be made flexible enough to facilitate production of 
a wide repertoire of movements. 
 

Figure 1:  Overview of neuroprosthetic device. 

 

 In pursuit of a neuroprosthetic system wherein paralyzed individuals with C5 or 
C6 spinal chord injuries (paralyzed from the neck down) regain control of their limbs, a 
translator device must be devised that is capable of producing muscle-activity signals 
from trajectory related signals (Figure 1).  However, due to the complex mechanics of the 
human limb associated with its many degrees of freedom and its redundant, non-linear 
actuators, operating according to an as yet undetermined control law, it is unlikely that 
linear controllers will soon be capable of controlling the system.  The complex 
interactions among these characteristics suggest that the use of non-deterministic, or at 
least non-linear, methods might be the only way to achieve satisfactory control of a 
human arm.  One solution might be achieved through the use of probabilistic methods.  
This project presents a non-deterministic controller in the form of a probabilistic 
predictor of muscle activity patterns based on Bayes’ Theorem. 
 

 Recently, neuroscience researchers have made significant progress in distilling 
trajectory information from the activity of neural populations in the motor cortex and 
other areas of the brain[6].  For example, Nicolelis and colleagues [14], [23], and 

Brain
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Limb

Spinal Cord

Trajectory

Muscle Stimulus
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Schwartz and colleagues [22] have shown that trajectory information can be extracted 
from the activity of a sampled population of neurons in the motor cortex which appear to 
be directionally tuned.  Then, using this population vector as the desired trajectory, they 
have produced a system which allows a monkey to control a robotic arm to perform 
various tasks.  However, few attempts have been made to distill muscle activity 
information from the brain in the same manner. 
 

1.1 Functional Electrical Stimulation 

 Functional electrical stimulation (FES) is a process wherein muscles are 
stimulated artificially via implanted or surface electrodes rather than by nerves delivering 
internally generated signals.  FES has been used to augment the movement capabilities of 
people who have, through injury to the spinal chord, lost some or all of their ability to 
control the movement of their limbs [7], [8] and hands [17], [18]. 
 

In an ideal FES system, a wide range of desired trajectories could be readily 
transformed into the appropriate patterns of muscle stimulations needed to evoke the 
corresponding natural movements.  These movements would in turn closely track the 
desired trajectory. 

 

Currently, FES systems are far from realizing this ideal.  There are two main 
versions of FES systems used by paralyzed patients.  In one system, desired EMG signals 
for specific movement sequences are recorded from an able-bodied subject and stored in 
digital format.  Then, when triggered by the patient (often through some type of voice 
recognition system), those signals are “replayed” through a set of stimulators to drive the 
muscles to reproduce the expected movement [8].  This approach is limited because only 
the specific movements which have been prerecorded can be used.  In this system, the 
entire movement sequence is replayed upon triggering and cannot be modified prior to or 
during execution so as to achieve a trajectory other than the one recorded.  The second 
deployed type of FES system is used by paralyzed patients that have retained some 
voluntary control of trunk and/or limb muscles.  The EMG produced by these muscles is 
used to drive an FES controller.  While these systems are generally used to augment 
retained movement [19], they have also been used to restore lost movement [7].  In both 
versions of current FES systems, the primary limitation is that muscle stimulation 
patterns cannot be readily estimated for a desired movement variation.  This lack of a 
generalized translation scheme has limited the usefulness of such systems.  Consequently, 
researchers have considered several approaches for producing a more generalized FES 
controller.  First, research has been primarily focused on the use of biomechanical models 
[17].  Given a good model, the relationship between kinematics and muscle activity can 
be found and used to solve the EMG estimation problem.  More recently, a few attempts 
at using artificial neural networks have been used to find similar kinematic parameter to 
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muscle activity mappings [1], [4], [13].  This project presents a third approach, which is 
to relate kinematic parameters and muscle activity through a probabilistic mapping. 
 

1.2 Analytical Biomechanical Models for Estimating Muscle Activity 

 In theory, the most direct way of obtaining good estimations of muscle activity 
would be to reverse engineer the system, breaking it down into a set of actuators and 
levers which behave in a predictable fashion.  Since about 1980, physiologists and 
engineers have approached the problem of estimating muscle force, which is 
monotonically related to muscle activity estimated from electromyographic (EMG) 
recordings, from a traditional Newtonian mechanics perspective [17], [21].  The general 
approach taken has been to calculate the torques at each joint, given the masses and 
kinematics of the limb segments.  Next, by introducing some knowledge of where 
muscles attach to the bony segments, lever arms and joint moments were found.  Then, 
applying knowledge about contractile properties of muscle, force and associated muscle 
activity for some group of muscles was estimated for the kinematics of the limb [20], 
[21].  There are several problems, however, with this inverse dynamics approach to the 
estimation of muscle activity.  Because the characterization of the contractile and 
mechanical properties of a muscle, its end connections, and other details are still 
incompletely understood, there are many assumptions and estimations that go into such a 
model [20].  These estimations form a primary source of error built into the model itself.  
Additionally, real joints do not operate as simple pivot joints, the distribution of mass of 
limb segments is not uniform or linear, and multiple joints are linked together giving rise 
to complex interactions.  Even if these complex features of a limb could be accurately 
modeled, and all assumptions and estimations made were accurate, then muscle 
redundancy and multiple degrees of freedom still result in an ill-posed problem which 
can only be solved by applying additional system constraints such as optimal control 
laws.  However, researchers have still not come to an agreement as to what kinds of 
optimal control laws are best for use in a generalized system which controls the 
movement of a human limb [17].  Therefore, the use of inverse dynamics based on 
biomechanical models has not been used successfully as a general purpose control 
strategy in FES systems. 
 

1.3 Bayes’ Theorem 

 In a departure from the biomechanical model to predict or estimate muscle 
activity for use in an FES system, this thesis presents a statistical predictor based on 
probabilistic relationships between kinematic information and muscle activity.  The 
statistical predictor used is based on Bayes’ Theorem which is a tool used to find the 
probability of the occurrence of some event given the prior occurrence of some other 
event (Chapter 3).  It has been employed in many ill-posed inverse problems and sensor 
fusion type tasks [9], [11], [2]. 
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From a more biological standpoint, Zhang and colleagues [26] successfully used 
Bayes’ Theorem to infer the position of a rat’s head in a 6464×  cm grid based on the 
patterns of spiking activity from simultaneously recorded hippocampal place cells as the 
rat wandered around an arena.  They found relative mean errors of 2-3 cm between the 
predicted and actual positions.  They also reported that the theoretical minimal error was 
also between 2 and 3.  This was significantly better than estimations of position based on 
population vector and basis function approaches. 

 

The Bayesian approach was applied to a specific case of medical diagnosis by 
Blinowska and colleagues [2] as part of a larger expert system.  They attempted to 
differentiate the cause of hypertension between essential hypertension and five types of 
secondary causes given general patient information, such as blood pressures, clinical 
symptoms, and biochemical test results. Their goal was to obtain at least 70% correct 
decisions within each cause of hypertension.  They correctly diagnosed the malady 
between 66% and 92% correct depending on which of the 6 causes of hypertension was 
investigated. 

 

Bayes’ theorem was used by Seifert and Fuglevand [18] to predict patterns of 
muscle activity in three muscles, an extensor and two flexors, which controlled the three 
primary joints of the finger, the metacarpalphalangeal, the proximal interphalangeal and 
the distal interphalangeal joints, given joint-angle trajectory data.  Then, stimulus pulse 
trains derived from predicted muscle activity levels were delivered to muscles in an 
attempt to evoke desired movements.  This system produced acceptable errors (12.1 ± 
3.2% RMS error) when comparing the predicted patterns of muscle activity to actual 
recorded EMG patterns for the same task.  This system also produced acceptable errors 
(16.7% mean RMS error) when comparing the desired finger movements to the finger 
movements produced by the artificial stimulus pattern. 
 

1.4 Summary 

This thesis extends the work done previously by Seifert and Fuglevand by 
showing that Bayes’ theorem can be used to estimate the activities of many muscles 
associated with complex natural movements of the human arm from trajectory 
information. 
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Chapter 2:  Data Collection 

EMG signals were recorded from 12 muscles (Table 1) using bipolar surface 
mounted silver-silverchloride electrodes with diameters of 4 mm. and inter-electrode 
spacing of approximately 2 cm. 

 

Muscle Name Primary Muscle Function 
Serratus Anterior Protracts shoulder by rotating the scapula in an 

upward fashion. 
Anterior Deltoid Draws arm forward (shoulder flexion). 
Posterior Deltoid Draws arm backwards (shoulder extension). 
Pectoralis Major Flexes, adducts, and medially rotates humerus. 
Latissimus Dorsi Extends, adducts, and medially rotates humerus. 
Teres Major Laterally rotates humerus. 
Biceps Brachii Flexes elbow, supinates forearm and flexes shoulder. 
Brachialis Flexes elbow. 
Brachioradialis Flexes elbow. 
Triceps Brachii Extends elbow. 
Extensor Carpi Radialis Longus Extends and adducts wrist. 
Flexor Carpi Radialis Flexes and abducts wrist. 

Table 1:  Names of the 12 muscles used in this experiment and their primary functions. 

 

The silver-silverchloride electrodes were chosen because they are very stable electrically 
and widely used for surface EMG recording.  This electrical stability significantly 
reduces noise artifact arising from the deformation of the skin under the electrode [5].  
The locations of the EMG electrodes for each of the 12 muscles are shown in appendix 
A. 
 

2.1 EMG Data Acquisition 

EMG signals were differentially amplified by 1000 and band-pass filtered (-6 dB. 
cutoff points at 100 Hz and 1000 Hz) by a bank of 12 analog Grass amplifiers, model 
12A5.  The low cutoff was chosen to help remove 60 Hz noise and movement artifact, 
most of which fell between 0 and 100 Hz as determined by experimentation.  It should be 
noted that the analog filters had a slow roll off, approximately -6 dB per decade, so that 
signals required further (digital) filtering as part of the preprocessing step. 
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Next, EMG signals were sampled and digitized by a Cambridge Electronic Design 
Ltd. Power 1401 data acquisition system.  The sample rate was 2000 samples per second 
per channel.  After amplification, EMG amplitudes were on the order of ±0.1 V.  Analog 
data were digitized with 16-bit range mapping to ±5V, for a precision of 152 µV or 
approximately 1350 levels within the EMG amplitude range.   
 

The EMG data acquisition setup described here is the same as the setup used by 
Seifert and Fuglevand [18]. 
 

2.2 Kinematic Data Acquisition 

For this experiment, the kinematic data parameters of interest were the horizontal, 
x, and vertical, y, positions of the endpoints of the various limb segments in a 2-D plane.  
Five markers were positioned to identify endpoints of body segments including the hip, 
shoulder, elbow, wrist, and hand (metacarpal phalangeal joint on the ulnar aspect of the 
hand) (Figure 2).  Each marker consisted of a cotton swab dipped in glow-in-the-dark 
paint and mounted in a small plastic fixture.  Experiments were conducted in low light 
conditions and the position of each marker was recorded by a single camera on digital 
video. 
 

Figure 2: The Experimental setup.  A) Subject in normal light conditions, sitting in chair, ready to 
begin experiment.  B) Subject in low light conditions, sitting in chair, ready to begin experiment.  
Markers showing positions are glowing and appear as dots.  (Text labels and stick figure have 
been added for clarification.) 
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In addition to the position of each marker, the digital video also recorded an LED 
as it flashed on and off which served as a synchronization mechanism.  A driving pulse 
turned on the LED for 1/20 second which was guaranteed to be long enough to be 
captured on at least one video frame.  The LED was then switched off for the remaining 
19/20 of that second.  The driving pulse which turned on the LED was also recorded by 
the same data acquisition system that acquired the EMG data and was the key element in 
synchronizing the kinematic data to the EMG data. 

 

2.3 Procedures 

For task one, the subject was first asked to move his arm throughout the sagittal 
plane (the plane perpendicular to the floor and running front to back) in a random 
fashion.  The subject was instructed to generate a variety of movements at varying speeds 
and to try to move through every point in the two-dimensional workspace without flexing 
the trunk.  Furthermore, the subject was asked to focus on making natural movements 
without excessive muscle co-contraction.  This task was performed for 15-20 minutes 
while EMG and kinematic data were recorded.  These data were used to establish the a 
priori probability density functions used in the Bayes’ theorem predictor. 
 

The subject was then asked to perform seven specific movement tasks.  The 
subject was asked to move at a natural speed and to repeat each task at least ten times 
keeping velocity and position characteristics as consistent as possible across trials of a 
task.  The subject paused for 1 – 2 sec. between trials of a task.   

 

For tasks two and three (Figure 3), the subject was instructed to start from a 
resting position with the arm pendent, raise the arm to about eye level, then trace out a 
side-ways figure eight, or infinity symbol, with the hand beginning the movement up and 
forward from the center of the symbol (task two) or beginning the movement down and 
towards the body (task three).  After completing the motion, the subject returned the arm 
to the resting position.  The completion of these steps formed a single trial.  The subject 
was asked to complete at least ten trials for each task.  
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Figure 3:  Overview of tasks 2 and 3.  In task 2, the subject was asked to trace out a sideways 
figure eight, or an infinity pattern, in the forward direction.  1) Beginning at rest, raise arm to eye 
level.  2) Trace first lobe of infinity pattern.  3) Trace second lobe of infinity pattern.  4) Lower 
hand to resting position.  In task 3, the subject reversed steps 2 and 3. 
 

For tasks four and five (Figure 4), the subject was instructed to start from a resting 
position, raise their arm to mid-chest level, then, beginning at the bottom corner closest to 
themselves, to trace out a figure of a square.  Initial direction of the movement was in the 
outward (or upward during the fourth task) direction.  After returning to the starting 
corner, the subject was to return his or her arm to the resting position.  The completion of 
these steps formed a single trial.  The subject was asked to complete at least ten trials for 
each task. 
 

For tasks six, seven, and eight (Figure 5), the subject was instructed to start from a 
rest position, reach out as if pressing a button located at the extent of their reach at head, 
shoulder or knee height respectively, and then return the hand to the rest position.  The 
completion of a single reach formed a single trial.  The subject was asked to complete at 
least ten trials for each of these tasks. 

 

1

23

4
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Figure 5:  Overview of tasks 6 – 8.  In task 6, 
the subject was asked to reach to head level.  
1) Beginning at rest, reach to head level.  2) 
Lower arm to the resting position.  In task 7, 
the subject reached to shoulder level 3) 
Beginning at rest, reach to shoulder level.  4) 
Lower arm to the resting position.  In task 8, 
the subject reached to knee level 5) 
Beginning at rest, reach to the knee level.  6) 
Return arm to the resting position. 

Figure 4:  Overview of tasks 4 and 5.  In task 
4, the subject was asked to trace out square 
pattern in the forward direction.  1) Beginning 
at rest, raise arm to shoulder level.  2) Trace 
first side of square.  3) Trace last side of 
square.  4) Lower hand to resting position.  In 
task 5, the subject reversed steps 2 and 3. 
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Chapter 3:  EMG Posterior Probability Density Function Estimation 

Using Bayes’ Theorem 

Bayes’ theorem is a statistical tool by which the posterior probability of the 
occurrence of an event A, given that event B has already occurred, can be found even 
when it cannot be measured or calculated directly.  The power of Bayes’ theorem is that 
it constitutes an indirect path for obtaining otherwise unobtainable conditional 
probabilities [2].  Its power is geometrically expanded when used in conjunction with the 
law of total probability.  The law of total probability allows Bayes’ theorem to be used to 
find the probability of the occurrence of event A given that events B, C, D, and so on, 
have already occurred. 
 

3.1 Discussion 

Bayes’ theorem is generally most useful when used in conjunction with the 
relation of conditional probabilities shown in equation 1. 
 

)(
)()|(

)|(
BP

APABP
BAP

⋅
=  

 

)|( BAP  is the a posteriori probability of the occurrence of event A given that event B 
has occurred, )(AP  is the a priori probability of the occurrence of event A, )(BP  is the a 
priori probability of the occurrence of event B and )|( ABP  is the probability of the 
occurrence of event B given that event A has already occurred.  For use in this project, the 
general form was modified in the following manner. 
 

Since the probability of event B given the prior occurrence of event A, multiplied 
by the probability of the occurrence of event A is equal to the joint probability of the 
event A and B, the following relation can be formed (Equation 2). 
 

),()()|( ABPAPABP =⋅  

 

Then, by combining equations 1 and 2 the following relation can be formed. 

1 

2 
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)(
),(

)|(
BP
BAP

BAP =  

 

To find its final form, Bayes’ theorem is applied to the conditional probability relation 
shown in equation 3. 
 

∑ ×
=

A

APABP
BAP

BAP
)()|(

),(
)|(  

 

The denominator in equation 4 serves as a normalization factor.  The summation over all 
values in the domain of A ensures that the histogram resulting from finding )|( BAP  
sums to unity.  It also normalizes with respect to the probability density function of A, in 
case )(AP  wasn’t uniformly distributed across the possible range so that each bin in the 
probability density function )|( BAP is equally weighted. 
 

For the experiment, the general result from equation 4 must be expanded because 
the parameter of interest is dependent on the occurrence of not a single event, B, but 
several events, e.g. B, C, and D.  The expansion of equation 4 is shown in equation 5. 
 

)()|()()|()()|(
),,,(

),,|(
APADPAPACPAPABP

DCBAP
DCBAP

AAA
∑∑∑ ⋅×⋅×⋅

=  

 

Equation 5 presents a problem.  Even when the values of the events A, B, C and D are 
limited to a small range, a huge number of samples would be needed to find a reasonable 
estimate of the joint probability, ),,,( DCBAP .  To make the problem more tractable, a 
reduction in dimensionality is necessary.  This reduction is achieved by assuming that 
events B, C, and D are independent and then applying the law of total probability to the 
independent conditional probabilities.  The result is described in equation 6. 
 

3 

5 

4 
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)|()|()|(),,|( DAPCAPBAPDCBAP ××=  

 

The combination of equations 4 and 6 results in equation 7 which then simplifies to the 
final, usable, form given in equation 8. 
 

)()|(
),(

)()|(
),(

)()|(
),(

),,|(
APADP

DAP
APACP

CAP
APABP

BAP
DCBAP

AAA
∑∑∑ ⋅

×
⋅

×
⋅

=  

 

∑ ⋅⋅⋅

⋅⋅
=

A

APADPACPABP
DAPCAPBAP

DCBAP
3)()|()|()|(

),(),(),(
),,|(  

 

Though estimating ),( BAP , ),( CAP , and ),( DAP , is still difficult, each of these 
estimations require many fewer samples than ),,,( DCBAP .  Furthermore, )(AP  is an a 
priori quantity as are the conditional probabilities, )|( ABP , )|( ACP , and )|( ADP . 
 

3.2 Implementation and Computational Notes 

Restating equation 7 once more with A, B, C, and D replaced with descriptions 
specific to this experiment gives the implemented form of the conditional probability 
relation of equation 1 combined with Bayes’ theorem. 
 

L

K

×
⋅

×
⋅

=

∑∑
1

11

1

1
11

1

1

)()|(
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)()|(
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EMG
MMelbow

Melbow

EMG
MMelbow

Melbow

wristelbowM

EMGPEMGYP
EMGYP

EMGPEMGXP
EMGXP

YXYXEMGP

 

 

In equation 9, the ordered pairs (X,Y)xxx are the positions of the respective markers and 
EMGMx, represent the muscle activity of a specific muscle, Mx.  The predicted muscle 
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activity level is defined to be the expected value of the probability density function which 
is found when equation 9 is evaluated for each level of muscle activity. 
 

Equation 9 was developed previously by Seifert and Fuglevand [18].  Its 
derivation is given here for completeness. 
 

Though Seifert and Fuglevand made use of joint angle velocities in their 
investigation of the Bayesian prediction technique [18], preliminary studies, done in 
conjunction with the work in this thesis, showed that no improvement was achieved 
through the addition of velocity or acceleration factors.  This finding was contrary to 
expectation and should receive a more complete investigation. 
 

The joint probability density functions, e.g. )|( 1Mhand EMGXP , and the 
probability density function of the muscle activity, e.g. )( 1MEMGP , for each muscle can 
be pre-computed from the data gathered during the random movement task (task 1, see 
page 17).  These density functions remain useful as long as the correlations between 
muscle activity and kinematic value don’t change with the passage of time or between 
data sets.  Having determined the joint densities and the overall EMG density, the 
conditional probability density function from which predictions are formed can be easily 
determined.  This was the approach taken in this study. 

 

To predict the level of muscle activity in one muscle at a single time increment 
required the evaluation of the quantity on the right side of equation 9.  When the 
probability density functions are binned in one percent increments, as they were in this 
project, estimating the muscle activity at a specific time, t, involved 1002 ∗∗n  multiply 
operations and 100 divide operations where n was the number of kinematic parameters 
considered. For this project there were six kinematic parameters (x and y coordinates for 
elbow, wrist, and hand).  Therefore, for each time bin, a prediction was formed for 12 
muscles from six kinematic parameters requiring approximately 14,400 multiply 
operations and 1,200 divide operations.  Each time bin was approximately 33 ms. Even 
general purpose micro-processors have no trouble performing this number of operations 
in less than the duration of one time bin and thus, this system could be easily be deployed 
to a real time framework. 
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Chapter 4:  EMG and Kinematic Data Processing 

The file containing recorded EMG data was opened in Matlab and read and the 
16-bit ADC data was converted to double precision floating point format.  The remaining 
preprocessing was significant and included a noise reduction step, a muscle modeling 
step, and a finalization/normalization step. 
 

4.1 Noise Reduction 

Visual inspection of the raw recorded EMG signals and analysis of the temporal 
frequency power spectra showed two types of noise present in our signal.  Large 
amplitude spikes constituted the first type of noise.  The source of these spikes is unclear 
though cable movement artifact is suspected.  The second type of noise was relatively 
low frequency noise.  In a separate set of pilot experiments, it was observed that cable 
movement artifact was the primary source of this second type of noise. 
 

4.2 High Frequency Noise 

High frequency noise present in the recorded EMG signals appeared as large 
amplitude spikes.  Amplitudes of these spikes were significantly larger than the 
amplitudes of recorded EMG signals.  They were large enough to distort the normalized 
EMG thereby degrading the Bayesian predictor’s performance.  In an effort to reduce the 
effect of these large amplitude spikes, the following heuristic was implemented.  For each 
channel, the DC bias was first removed by subtracting the mean of the recorded EMG 
signal.  Then, in an iterative procedure, a threshold was found which threshold was the 
amplitude level below which 99.99% of the data points fell.  All data points with 
amplitude values above this threshold, namely <0.01% of the total number of data points, 
were clipped to the threshold value.  Visual inspection of the EMG showed that this 
method was effective in removing large-amplitude high-frequency noise spikes (Figure 9, 
page 31). 
 

4.3 Low Frequency Noise 

In a separate set of studies, power spectra of EMG signals recorded during static 
muscle contractions with no cable movement were computed.  The bandwidth of the 
surface detected EMG under these conditions was approximately 60 to 500 Hz.  EMG 
signals recorded while the muscles were at rest, but with imposed cable movement, fell 
into the 0 to 300 Hz range and had significantly more total power than the EMG signals 
during the static contractions did.  For the two muscles investigated in this set of studies, 
the signal to noise ratio was -38.57 dB and -22.28 dB.  In an effort to boost the signal to 
noise ratio, an aggressive zero phase digital band pass filter was applied.  The filter was a 
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20th order Butterworth with a passband frequency range of 100 to 500 Hz.  (Figure 6).  
This aggressive band pass filter was applied in addition to the filtering done by the analog 
amplifiers and was necessary because of the slow rolloff characteristics of the amplifiers’ 
built in filters.  A Butterworth type filter was chosen to comply with normally accepted 
practices for EMG processing by physiologists [24].  The passband frequency cutoffs 
were chosen as a compromise level between low frequency noise and signal.  The filter 
cutoffs did result in slight attenuation of the signal, but they also severely attenuated the 
main part of the noise.  In the set of mini-experiments conducted, the attenuation of the 
total signal power was small, 0.2 dB (2%) and 0.3 dB (3%) for each of the two muscles 
respectively.  On the other hand, much of the noise was removed.  The total power of the 
noise was reduced by 17.3 dB (86%) and 17.7 dB (87%) on each of the respective 
channels.  This boosted the overall signal to noise ratio by over 17 dB (700%) on each 
channel. 
 

Figure 6:  Theoretical magnitude frequency response of noise reducing band pass filter. 

 

4.4 Muscle Activity 

Surface recorded EMG signals are the summation of the electrical activity of 
muscle fibers near the recording site.  The electrical activity recorded is the spike-like 
variation of the voltage potential across a muscle fiber’s cell membrane due to the arrival 
of an action potential [10].  These EMG signals range over positive and negative values 
and range in frequency from about 10 Hz to 500 Hz [24]. 
 

The signal of interest, however, is not EMG but the tensile force of the entire 
muscle developed at its end points.  Surface recorded EMG signals bear little 
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resemblance to the activity of the contractile apparatus which underlies the development 
of tensile force by skeletal muscle.  Unlike EMG, muscle force is unidirectional; it does 
not have both positive and negative amplitude components.  Muscle activity ranges in 
frequency from approximately 0 Hz to 5 Hz [10].  Muscle activity is the instantaneous 
summation of all the muscle fiber activity across the whole muscle and can be thought of 
as the envelope containing the positive portion of the EMG [10] (Figure 7).   
 

Figure 7:  The muscle activity or muscle force may be thought of as the positive envelope (thick 
black line) containing the recorded EMG (gray trace). 
 

The relationship between recorded EMG and muscle activity described previously 
suggests a processing method for approximating muscle activity from recorded EMG.  
First, the EMG is rectified to produce a unidirectional signal.  Second, the recorded EMG 
is low pass filtered with a 6 Hz cutoff.  In this experiment, a 6th order Butterworth zero 
phase low pass filter with -3 dB point at 6 Hz (Figure 8) was used.  The resulting signal is 
an estimate of muscle activity and will be referred to as such. 

Raw Recorded EMG vs. 
Est i m at e of  Mu scl e A ct i vi t y
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Figure 8:  Theoretical magnitude frequency response of low pass filter. 

 

4.5 Finalizing and Normalizing 

The band-limited estimate of muscle activity was downsampled from 2000 Hz to 
30 Hz for alignment to the kinematic data.  Finally, the amplitude was normalized to the 
range 0.0 to 1.0, and the ends were trimmed to remove the transients introduced during 
filtering (Figure 9). 
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Figure 9:  Example comparison of raw recorded EMG and estimated muscle activity for two 
muscles, Latissimus Dorsi and Pectoralis Major.  Data was taken from task 1, the random 
movement task.  Note the removal of spikes in the EMG recording of the Pectoralis Major.  Also, 
note the scaling to 100% on both muscles from their baseline levels. 
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4.6 Preprocessing Kinematic Data 

Kinematic data were recorded optically with a digital video recorder.  It was 
important to maintain proper alignment between the kinematic data and the recorded 
EMG data over the entire time course of the experiment in order to ensure that the joint 
probability density functions which characterized the statistical relationship between 
muscle activity and kinematics at the beginning of the experiment also characterized their 
statistical relationship at the end of the experiment.  The danger was that if errors due to 
dropped or added frames were allowed to propagate through the data, the delays 
 

Figure 10:  Data flow path of kinematic pre-processing showing first four of five steps.  Step 1) 
Extract the kinematic position information from recorded video.  Step 2) Extract the frame 
numbers from frames with LED pulses for synchronization.  Step 3) Extract time bins of edges of 
synchronizing pulses from data acquisition channel.  Step 4) Combine into a time base 
synchronized data stream filled with kinematic data. 
 

 introduced could become significant.  For this, reason great care was taken to align the 
kinematic data and the recorded EMG data and every effort was taken to minimize phase 
distortion.  The kinematic data preprocessing can be broken down into five steps, 
extracting the position data from the video, extracting the frame numbers of 
synchronizing frames containing the LED flash, extracting synchronization time bins 
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from the recorded synchronizing pulses, combining kinematic data and synchronizing 
pulses into a time base synchronized data stream, and final preprocessing (Figure 10). 
 

4.7 Extracting Position Data 

The first step in preprocessing the kinematic data was to transfer the digital video 
captured during the experiment to a computer using the Adobe Premiere video editing 
package.  It was then recompressed to the Intel Indeo 5 codec and exported to a Microsoft 
.avi file.  This file was then opened by the MaxTraq software package for digitization and 
tracking.  After being processed by MaxTraq, an ASCII file containing header 
information and the (x,y) position in pixels of the position markers during each frame 
was generated.  This file was the basis for subsequent analysis.  (Figure 10, step 1) 
 

4.8 Extracting Synchronization Data 

For the second kinematic preprocessing step, the Microsoft .avi file generated by 
Adobe Premiere was searched for the number of each frame wherein the synchronizing 
LED flash was visible.  To determine if a frame should be marked as a synchronizing 
frame, RGB data from each frame were summed to yield a composite image of the 
frame’s activity.  Next, the area of the frame within which the LED flash appeared was 
searched.  If the activity level exceeded a threshold, that frame was flagged as a 
synchronizing frame and the frame number was stored.  If more than one consecutive 
frame was found to exceed threshold level then each frame of the sequence was 
compared and the frame number of the frame with the maximum activity level was 
stored.  The threshold was set by manually tracking the activity level of the region of 
interest over several cycles of the flashing LED.  After processing the entire file, the 
frame numbers of the synchronizing frames were written to a file as a comma separated 
vector (Figure 10, step 2). 
 

While the digital video captured was nominally 30 frames per second, the actual 
sample rate was 29.97 frames per second, the NTSC standard.  This meant that on 
occasion, there would be 29 frames per second.  Additionally, the possibility of a dropped 
frame also would result in 29 frames per second.  These occurrences were rare but 
occurred often enough to cause significant relative phase distortion between muscle 
activity and kinematic signals if uncorrected.  Additional complicating factors included 
the unknown frame transition gap and the exposure time which lead to the occasional 
occurrence of a second containing 31 frames.  It was critical for the kinematic and EMG 
data to be properly aligned in time so the occasional second containing fewer than or 
more than 30 frames created a potential problem which compounded for long 
experiments.   To ensure that these inconsistencies in the frame capture did not adversely 
affect the predictor’s performance by causing the signal statistics to change with time, the 
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kinematic data were realigned at each one second interval so that epochs containing only 
29 frames were padded to 30 frames and any epochs containing 31 frames were clipped.  
The collection of one second intervals each with 30 data points was then pieced together 
to form a single kinematic data set with a consistent time base and was ready to be 
aligned to the synchronizing pulse train recorded by the data acquisition system along 
with the EMG. 
 

4.9 Synchronizing Pulses from Data Acquisition Channel 

The third step towards synchronizing the recorded EMG and the kinematic data 
was to process the synchronizing pulse channel.  This channel was acquired by the same 
data acquisition system as the EMG signals and so it was already aligned in time with the 
recorded EMG.  The channel contained a series of square wave pulses, one for each pulse 
of the LED, and was obtained by recording the output which drove the LED on an 
acquisition channel.  To find the rising edges, the square pulses on this channel were first 
downsampled from 2000 Hz to 30 Hz to match the video capture rate.  This had the effect 
of compressing the square pulse which drove the LED into an impulse type signal.  The 
downsampled signal was then differentiated.  A threshold was used to find the rising 
edges and the number of edges found was counted.  This number was compared to the 
number of flashes recorded by the camera and stored in the comma-separated vector 
mentioned previously.  A discrepancy between the number of synchronizing video frames 
and the number of recorded synchronizing pulses indicated that there was a problem 
somewhere in the process.  Either the threshold in finding the rising edges of the pulses 
was wrong and an edge had been missed, the video processing had not found an existing 
synchronizing flash of the LED, or the was an error during the experiment wherein the 
data acquisition machine began flashing the synchronizing light before the camera began 
to acquire video (Figure 10, step 3). 
 

4.10 Aligning the Kinematics into a Data Stream with a Consistent Time Base 

When the two numbers matched, alignment could be done without introducing 
any estimations or approximations.  In addition to finding the number of rising edges, the 
time bin of each rising edge was found.  The frame containing the flash of the LED could 
be aligned to the time bin containing the rising edge and plateau.  This was done by 
beginning at a reference frame and aligning all the raw data from the reference frame 
back to the previous reference frame.  In this way the data was always exactly aligned to 
the EMG data at at least one point during each second.  At this point, the raw kinematic 
position data generated by the MaxTraq software had been inserted into a time base 
aligned vector and was ready for further processing (Figure 10, step 4). 
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4.11 Final Preprocessing of Synchronized Kinematic Data 

The fifth step in the preprocessing of the kinematic data was a filtering and 
normalizing step.  The synchronized data was smoothed by applying the same low pass 
Butterworth filter used for the EMG data, -3 dB at 6 Hz (Figure 8).  The 6 Hz cutoff 
frequency was chosen for the same reason it was used to filter the EMG during its 
preprocessing.  Kinematic position data were then normalized to a scale of 0.0 to 1.0 
where zero mapped to one edge of the camera’s range of view and one mapped to the 
other edge.  This global scaling was used, instead of scaling to maximal displacement, in 
order to keep consistent scaling between trials and tasks. 
 

The experiment did not include muscles that control the movement of the trunk of 
the body.  Therefore, the sites of interest, the elbow, the wrist, and the hand, were all 
measured relative to the shoulder position.  Though small (maximum displacement of the 
shoulder marker from the mean was between 2% and 8% in the y direction and 4% and 
6% in the x direction depending on task), there was some trunk movement during the 
tasks.  To remove these effects, the mean of all the recorded shoulder marker positions 
was found.  Then, for each frame and the deviation of the shoulder marker position from 
the mean shoulder marker position was found and subtracted from the elbow position, 
wrist position, and hand position during that frame.  This resulted in elbow, wrist and 
hand positions relative to a fixed shoulder position. 
 

4.12 Estimating Probability Density Functions 

Once the kinematic and EMG data were processed and aligned, two important 
statistical measures were computed from the task 1 data.  The overall density function of 
muscle activity for each muscle throughout the entire task was found first.  The 
normalized amplitude range, 0.0 to 1.0, was binned by percent and included 0% and 
100% (101 bins total).  For each muscle, a histogram of the amplitudes was computed.  
The bin counts were normalized to sum to unity and the result was treated as the sample 
probability density function of the muscle activity.  The amplitude probability density 
function was used in the Bayes’ process to normalize the conditional probability densities 
(Equation 9). 
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Figure 11:  Extracting the probability density function for a kinematic parameter associated with 
one level of muscle activity.  For a level of muscle activity (25% shown here), the corresponding 
list of kinematic parameter values is found and those bins are incremented.  An estimate of the 
joint probability density function results from performing this process for each level of muscle 
activity. 
 

According to equation 9, the other parameter of interest is the joint statistics.  The joint 
probability density function between each muscle and each kinematic parameter was 
found in the following manner.  For each level of muscle activity, 0% - 100%, a 
histogram was made from the corresponding values of a kinematic parameter (Figure 11).  
When normalized, the array of histograms formed the sample joint probability density 
function (Figure 12).  After forming the sample joint probability density functions for 
each (muscle, kinematic parameter) pair, they are combined into a multidimensional 
array containing joint probability density functions (Figure 13). 
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Figure 12:  Example joint probability density function. 
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Figure 13:  Example resulting array of joint density functions.  Each muscle e.g. M1 or M7, and 
kinematic parameter e.g. position, velocity, pair has an associated joint probability density 
function which maps the relationship between the muscle activity values and kinematic values.  
Each bin in the array shown here contains a joint probability density function shown as a contour 
map). 
 

4.13 Making a Prediction 

Making a prediction involved five steps.  First, the given muscle and kinematic 
parameters were used as indices for finding the desired joint probability density function.  
Second, for the given value of each kinematic parameter of interest, a histogram was 
selected from the joint distribution function (Figure 14.a, 14.b, and 14.c).  Third, each 
was normalized according to Bayes’ theorem (Equation 9 and Figure 14.d).  This method 
of normalization was important in this experiment because the joint probability density 
function represents the joint statistics of a non-uniform data set, i.e. the muscle 
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Figure 14:  Demonstration of how a prediction is formed.  A) Given a set of desired kinematic 
parameters, select the value at time = t.  B) Use the values selected in A as indices into 
appropriate joint probability density functions.  C) Retrieve the indexed histogram.  D) Normalize 
by density of muscle activity for the given muscle and multiply all resulting histograms together.  
E) The final probability density function and the expected value (arrow) which becomes the 
predicted muscle activity value. 
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 activity values were small more often then they were large.  The non-uniformity of the 
sample data skews the joint probability density function and this normalization corrects 
for that factor.  Fourth, corresponding elements from each of the normalized probability 
density functions were multiplied together according to the Law of Total Probability 
(Figure 14.e).  The product histogram was then renormalized such that it summed to unity 
and was defined to be the resultant probability density function.  Fifth, a prediction of the 
muscle activity for each particular muscle, given the specific kinematic combination, was 
found by calculating the expected value of the resultant probability density function 
(Figure 14.e). 
 

 As an example, suppose it is desired to predict the muscle activity of the 
pectoralis major, given that the y position of the elbow is 75%.  First, select the joint 
probability density function which associates M4 with Kin2 (Figure 13).  Next, select the 
histograms for the given kinematic values of 75% (Figure 15).  Once these histograms 
have been normalized, the expected value can be found and a prediction made (Figure 
14). 
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Figure 15:  Example one dimensional sample histograms of estimated muscle activity, given two 
different levels of kinematics, 75% and 40%. 
 

4.14 Evaluating the Prediction 

Evaluation of the prediction was made by finding the RMS error between the 
predicted values of muscle activity and its actual values. 
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Chapter 5:  Results 

Figure 16 shows an example of the trajectories of the elbow, wrist and hand 
during repeated trials of task 4.  Slight variations in limb trajectory during successive 
trials probably contributed to the variation in the detected muscle activity across trials.   
 

Figure 16:  Overlay of positions during 10 trials of task 4 (squares).  E shows the path of the 
elbow marker.  W shows the path of the wrist marker and H shows the path of the hand marker.  
Note the slight variation in position for repeated trials which lead to small variations in muscle 
activity during repeated trials. 
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Figure 17:  The Repeatability of predictions.  For 10 trials of task 4, the desired (actual) muscle 
activity (shown as the thin black line) and the predicted muscle activity (shown as the thick gray 
line) are overlaid.  Note the variation in desired muscle activity on repeated trials.  Also note the 
good correspondence between the predicted and the desired even with the variation of desired 
muscle activity during repeated trials of the same task. 
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Figure 17 shows the desired and predicted muscle activity during task 4 (squares 
task).  Note the variation in the desired muscle activity for repeated trials of the same task 
within the same muscle.  This variation in muscle activity is expected and most likely 
arises from slight variations in limb trajectory.  Despite these variations, the Bayes’ 
method of predicting muscle activity from kinematics yielded good estimates of muscle 
activity on a trial-to-trial basis. 
 

5.1 RMS Errors 

Overall, the RMS error for all muscles and tasks was small with a mean (± SD) of 
6.11 ± 3.06% (range 1.03% to 17.37%).  Table 2 shows the RMS errors according to task.  
The best predicted tasks were task 7 (the midlevel reach), task 8 (the low level reach) and 
task 2 (the forward direction figure eights).  The data of table 2 are summarized in figure 
18. 
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Movement Task Mean RMS Error % ± 

Standard of Deviation 

Min. / Max. RMS 

Error % 

Task 2 - Figure Eights (forward) 6.24 ± 3.18 1.24 / 17.37 

Task 3 - Figure Eights (reverse) 5.36 ± 2.20 1.45 / 10.03 

Task 4 - Squares (forward) 4.73 ± 1.82 1.38 / 8.16 

Task 5 - Squares ( reverse) 6.29 ± 2.49 1.22 / 11.86 

Task 6 - High Reach 7.93 ± 3.93 1.40 / 16.49 

Task 7 - Midlevel Reach 3.72 ± 1.65 1.03 / 7.49 

Task 8 - Low Reach 4.03 ± 2.16 1.06 / 8.83 

Overall 6.11 ± 3.06 1.03 / 17.37 

Table 2:  Synopsis of RMS errors collapsed over all muscles.  Values given in percent. 
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Figure 18:  Tasks ranked in order of ascending RMS error. 

 

Table 3 shows the RMS errors for each muscle across all tasks.  Figure 19 shows 
the mean (±SD) for each muscle ranked in ascending order according to RMS error.  
M12, flexor carpi radialis, and M11, extensor carpi radialis longus, were the best 
predicted muscles (Figure 19).  Though, for the tasks studied, these muscles showed little 
activity and it is unclear how they would be predicted for a task with significant activity. 
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Muscle Name Mean RMS Error % ± 

Standard of Deviation 

Min. / Max RMS Error % 

M1 - Serratus Anterior 7.06 ± 4.98 1.24 / 21.81 

M2 - Anterior Deltoid 9.00 ± 3.54 4.26 / 21.27 

M3 - Posterior Deltoid 5.95 ± 3.90 1.17 / 18.66 

M4 - Pectoralis Major 8.33 ± 3.65 3.91 / 21.90 

M5 - Latissimus Dorsi 8.19 ± 3.51 3.33 / 23.03 

M6 - Teres Major 6.25 ± 3.69 2.36 / 22.95 

M7 - Biceps Brachii 4.49 ± 2.59 2.34 / 18.63 

M8 – Brachialis 6.25 ± 2.24 2.34 / 14.75 

M9 – Brachioradialis 4.16 ± 1.82 1.83 / 13.66 

M10 - Triceps Brachii 7.75 ± 3.68 2.18 / 18.13 

M11 - Extensor Carpi 

Radialis Longus 

3.74 ± 1.87 1.82 / 13.84 

M12 - Flexor Carpi Radialis 2.10 ± 1.22 1.03 / 8.55 

Overall 6.11 ± 3.06 1.03 / 23.03 

Table 3:  Synopsis of muscle RMS errors collapsed over all tasks and trials.  Values shown in 
percent. 
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Figure 19:  Muscles ranked in order of ascending RMS error. 
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Chapter 6:  Discussion 

Previously, Seifert and Fuglevand [18] showed good correspondence between 
desired muscle activity and predicted muscle activity resulting in 12.1% RMS error 
across three muscles and five movements.  Additionally, for this amount of RMS error, 
they were able to also show that a frequency modulated pulse train derived from the 
predicted EMG and then delivered to the muscles as a stimulus pattern evoked a 
movement response which closely matched the desired with RMS errors ranging from 
21.8% to 23.8% across all movements, subjects, tasks and trials.  Overall, these errors 
were modest and the evoked movements corresponded well to the desired movements.   
 

This thesis shows the successful extension of the work done previously by Seifert 
and Fuglevand [18] by demonstrating that Bayes’ theorem can be used to estimate the 
muscle activity during natural complex movements for the many muscles associated with 
movements of a human limb.  Furthermore, this estimation was achieved with a high 
degree of accuracy with mean RMS errors around 6.1%.  The improvement over the 
results from Seifert and Fuglevand is most likely due to the extended duration and the 
less constrained movement of task 1, the training task used to establish the probability 
density functions. 
 

Though introduced as an alternative method for mapping kinematic signals to 
muscle activity, the use of artificial neural networks has not been directly applied to the 
problem of estimating muscle activity from kinematic information.  However, the inverse 
problem of mapping muscle activity signals to kinematic values has been lightly 
investigated.  Some results are presented because, though these results are not directly 
comparable to the results of the experiment presented in this thesis, the estimation 
process described in this thesis is reversible so that kinematic values could be predicted 
given muscle activity levels and it is expected that the RMS errors would be similar, 
about 6.1%.  Au and Kirsch [1] reported RMS errors of 14% - 19% in a study where 
artificial neural networks were used to predict kinematic information from muscle 
activity signals recorded from six muscles during three movement types.  A simplified 
but parallel problem was considered by Massone and Bizzi [13] wherein a neural network 
was used to predict the driving signals to a mechanical arm loosely based on a simplified 
model of the human arm.  They reported good success in the ability of the artificial neural 
network to drive the mechanical arm to a desired end point position.  Cheron and Dray 
[4] also showed that an artificial neural network could map EMG derived signals to 2-D 
kinematic values.  They showed good success though no error quantity was given.   
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6.1 For Future Study 

There were a few items which did not receive treatment in this thesis which are 
germane to the technique presented and/or the specific, proposed application.  Each are 
presented in brief summary. 
 

6.2 Dimensionality 

This study only included two-dimensional kinematic data.  However, real arm 
movements take place in three dimensions.  It should be understood that for movements 
within a single plane, some muscles are not used except in a stabilizing role.  It is 
expected that movements in three dimensions would give rise to interesting muscle 
activity on some of those muscles which, for this study, served only to stabilize the arm.  
Based on the predictions for muscles which contributed significantly during the two 
dimensional movements, it is expected that given three dimensional position data the 
predictions for those muscles which would become more active could be predicted with 
similar results to the predictions of muscles active during movements confined to a single 
plane. 
 

6.3 Independence Assumption 

 This study assumes that the activity of each muscle is independent of the activity 
in all the other measured muscles.  It is highly unlikely that this is the case.  The 
following modification to the Bayes’ process described by this thesis might cover the 
case of non-independence between muscles.  In addition to finding the joint probability 
density functions between each muscle and each kinematic parameter, the joint 
probability density functions between each muscle and each other muscle might also be 
calculated.  Then in an iterative approach, the predicted value for each muscle could be 
determined.  The initial guess of EMG for each muscle would assume independence as 
was done in this study.  Once that predicted value was found, the prediction for each 
muscle could be recalculated, adding in the predicted values of all other muscles as 
additional dependencies.  Then, the process could be repeated until some criteria for the 
amount of change allowed was reached or for a specified number of iterations.  One of 
three possible outcomes would result.  The predicted EMG values would enter a limit 
cycle, converge or diverge. 
  

6.4 Kinematic Parameters 

 The results presented by this thesis are based solely on the positional kinematic 
parameters.  However, the additional parameters of velocity and acceleration were also 
investigated.  It was found that, contrary to expectation, additional kinematic parameters 
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which provide some history information like velocity and acceleration, did not improve 
the prediction.  They actually degraded the prediction and resulted in higher RMS errors.  
This might be due to the amplification of noise during the differentiation process, the 
time scale of the velocity and acceleration data, or, this effect could be simply because 
positions translate into muscle activity better than velocities and accelerations so that the 
introduction of velocity or acceleration into the equation was equivalent to the 
introduction of greater error.  These results were not presented because the cause of the 
deteriorated results is still not clear.  If noise amplification due to differentiation caused 
the degraded performance, then appropriate filtering might greatly improve performance.  
If the time scale was resulting in degraded performance, the average velocity or 
acceleration over some longer period, e.g. ½ second or 1 second, could be used. 
 

6.5 Implications for Functional Electrical Stimulation (FES) 

 In any FES system, muscles are stimulated by electrodes delivering electric 
pulses.  The predictor described in this thesis provides an estimate of the global muscle 
activity.  However, an estimate of muscle activity could be used as a controller in an FES 
system using a transformation from predicted muscle activity to a frequency modulated 
pulse train which could be delivered to muscles as done in Seifert and Fuglevand [18]. 
 

 Because a user of an FES system cannot produce the EMG and kinematic data 
needed to form a training set for the Bayesian estimation technique presented here, it 
would be important to determine how the system would work when the set of training 
data came from a subject other than the one using the system.  Based on the work of 
Seifert and Fuglevand [18], it is expected that using different subjects for training and for 
implementation would not affect the system too adversely, i.e. the predictor should still 
work with minimal worsening of predictions.  However, if problems arose between 
subjects or if the joint densities changed with time, an adaptive approach could be 
employed wherein the density functions would be continually updated during use.  For 
example, this could be done by simply forming the required densities of a batch of data, 
adding it to the existing densities and renormalizing.  This process reinforces correct 
correlations and minimizes the effect of incorrect correlations. 
 

6.6 Summary 

 The results presented in this thesis could be the key element in connecting two 
research camps that are currently working to develop neuroprosthetic systems to restore 
movement in paralyzed individuals.  On one side, many researchers have worked 
extensively on cortical control of robotic devices.  Their work has focused on generating 
trajectory information by interpreting the neural activity recorded from the brain.  They 
have avoided the problem associated with the control of real muscles by restricting their 
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application to the control of robotic arms.  On the other side, many researchers have 
worked for years to restore some use of the natural limb through functional electrical 
stimulation.  They have been limited by the severe shortcomings in the control of these 
systems and have settled for using joysticks and preprogrammed movements.  This 
project has the potential to combine the technology of both parties and produce a truly 
viable neuroprosthetic solution. 
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Appendix A – Atlas of Electromyography 

 This appendix contains diagrams of the locations of EMG recording sites for each 
muscle.  All illustrations in this appendix were taken from [12]. 
 

Figure 20:  The location of M1, serratus anterior.  The black dot marks the recording site. 
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Figure 21:  The location of M2, anterior deltoid.  The black dot marks the recording site. 
 
 

Figure 22:  The location of M3, posterior deltoid.  The black dot marks the recording site. 



 49 

Figure 23:  The location of M4, pectoralis major.  The black dot marks the recording site. 
 
 

Figure 24:  The location of M5, latissimus dorsi.  The black dot marks the recording site. 
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Figure 25:  The location of M6, teres major.  The black dot marks the recording site. 
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Figure 26:  The location of M7, biceps brachii.  The black dot marks the recording site. 
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Figure 27:  The location of M8, brachialis.  The black dot marks the recording site. 
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Figure 28:  The location of M9, brachioradialis.  The black dot marks the recording site. 
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Figure 29:  The location of M10, triceps.  The black dot marks the recording site. 
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Figure 30:  The location of M11, extensor carpi radialis.  The black dot marks the recording site. 
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Figure 31:  The location of M12, flexor carpi radialis.  The black dot marks the recording site. 



 57 

References 

 

[1] Au, A.T.C. and Kirsch, R.F., “EMG-Based Prediction of Shoulder and Elbow 
Kinematics in Able-Bodied and Spinal Cord Injured Individuals,” I.E.E.E. 
Transactions on Rehabilitation Engineering, vol. 8, no. 4, pp. 471-480, Dec. 
2000. 

  
[2] Black, T.C., Thompson, W.J., “Bayesian Data Analysis,” Computing in Science 

and Engineering, vol. 3, iss. 4, pp. 86-91, July/Aug. 2001. 
  

[3] Blinowska, A., Chatellier, G., Bernier, J., and Lavril, M., “Bayesian Statistics as 
Applied to Hypertension Diagnosis,” I.E.E.E. Transactions on Biomedical 
Engineering, vol. 38, issue 7, pp. 699-706, Jul. 1991. 

  
[4] Cheron, G., Draye, J.P., Bourgeios, M. and Libert, G., “A Dynamic Neural 

Network Identification of Electromyography and Arm Trajectory Relationship 
during Complex Movements,” I.E.E.E. Transaction on Biomedical Engineering, 
vol 43, no. 5, pp. 552-558, May 1996. 

  
[5] Clancy, E.A., Morin, E.L., Merletti, R., “Sampling, Noise-Reduction and 

Amplitude Estimation Issues in Surface Electromyography,” Journal of 
Electromyography and Kinesiology vol 12, pp. 1-16, Sept. 2001. 

  
[6] Deadwyler, S.A., Hampson, R.E., “The Significance of Neural Ensemble Codes 

During Behavior and Cognition,” Annual Review Neuroscience, vol. 20, pp. 
217-244, 1997. 

  
[7] Graupe, D. Kordylewski, H., “Artificial Neural Network Control of FES in 

Paraplegics for Patient Responsive Ambulation,” I.E.E.E. Transactions on 
Biomedical Engineering, vol. 42, no. 7, pp. 699-707, July 1995. 

  
[8] Hoshimiya, N. Naito, A., Yajima, M., Handa, Y., “A Multichannel FES System 

for the Restoration of Motor Functions in High Spinal Cord Injury Patients: A 
Respiration-Controlled System for Multijoint Upper Extremity,” I.E.E.E. 
Transactions on Biomedical Engineering, vol. 36, no. 7, pp. 754-760, July 
1989. 

  



 58 

[9] Huo, Q. and Lee, C.H., “A Bayesian Predictive Classification Approach to 
Robust Speech Recognition,” I.E.E.E. Transactions on Speech and Audio 
Processing, vol. 8, issue 2, pp. 200-204, March 2000. 

  
[10] Kamen, G., Caldwell, G., “Physiology and Interpretation of the 

Electromyogram,” Journal of Clinical Neurophysiology, vol. 13, no. 5, pp. 366-
384, 1996. 

  
[11] Kang, D. Luo, R.C., Hashimoto, H., Harashima, F., “Position Estimation for 

Mobile Robot Using Sensor Fusion,” Multisensor Fusion and Integration for 
Intelligent Systems, 1994. IEEE International Conference on MFI '94., iss., 2-5, 
pp. 647-652, Oct 1994. 

  
[12] Leis, A.A., Trapani, V.C., Atlas of Electromyography, New York: Oxford 

University Press, Inc., 2000, pp. 21-93. 
  

[13] Massone, L. and Bizzi, E., “A Neural Network Model for Limb Trajectory 
Formation,” Biological Cybernetics, vol. 61, pp. 417-425, 1989. 

  
[14] Nicolelis, M., Journal of Neurosurgery, (forthcoming), July 2004. 

  
[15] Peckham, P.H., Keith, M.W., et. al.,  “Efficacy of an Implanted Neuroprosthesis 

for Restoring Hand Grasp in Tetraplegia: A Multicenter Study,” Archives of 
Physical Medicine and Rehabilitation, vol. 82, pp. 1380-1388, Oct. 2001. 

  
[16] Peckham, P.H., Kilgore, K.L., et. al., “An Advanced Neuroprosthesis for 

Restoration of Hand and Upper Arm Control Using an Implantable Controller,” 
The Journal of Hand Surgery, vol. 27, pp. 265-276, 2002. 

  
[17] Putnam, C.A., “A Segment Interaction Analysis of Proximal-to-Distal 

Sequential Segment Motion Patterns,” Medicine & Science in Sports & 
Exercise, vol. 23, no. 1, pp. 130-144, Jan. 1991. 

  
[18] Seifert, H.M. and Fuglevand, A.J., “Restoration of Movement Using Functional 

Electrical Stimulation and Bayes’ Theorem,” The journal of Neuroscience, vol. 
22, pp. 9465-9474, Nov. 2002. 

  



 59 

[19] Sennels, S., Biering-Sorensen, F., Andersen, O.T., Hansen, S.D., “Functional 
Neuromuscular Stimulation Controlled by Surface Electromyographic Signals 
Produced by Volitional Activation of Same Muscle: Adaptive Removal of the 
Muscle Response from the Recorded EMG-Signal,” I.E.E.E. Transactions on 
Rehabilitation Engineering, vol. 5, no. 2, pp. 195-197, June 1997. 

  
[20] Soechting, J.F., Flanders, M., “Evaluating an Integrated Musculoskeletal Model 

of the Human Arm,” Journal of Biomechanical Engineering, vol. 119, pp 93-
102, Feb. 1997. 

  
[21] Stansfield, B.W., Nicol, A.C., Paul, J.P., Kelly, I.G., Graichen, F., Bergmann, 

G., “Direct Comparison of Calculated Hip Joint Contact Forces with Those 
Measured Using Instrumented Implants.  An Evaluation of a Three-
Dimensional Mathematical Model of the Lower Limb,” Journal of 
Biomechanics, vol. 36, pp. 929-936, 2003. 

  
[22] Taylor, D.M., Tillery, S.I.H., Schwartz, A.B, “Direct Cortical Control of 3D 

Neuroprosthetic Devices,” Science, vol. 296, pp. 1829-1832, June 2002. 
  

[23] Wessberg, J., et. al., “Real-Time Prediction of Hand Trajectory by Ensembles of 
Cortical Neurons in Primates,” Nature, vol. 408, pp. 361-365, November 2000. 

  
[24] Winter, D.A., Biomechanics of Human Movement, New York: John Wiley & 

Sons, 1979, pp. 32-39, 139-145. 
  

[25] Wolpert, D.M. and Ghahramani, Z., “Computational Principles of Movement 
Neuroscience,” Nature Neuroscience Supplement, vol. 3, pp. 1212-1217, Nov. 
2000. 

  
[26] Zhang, K., Ginzburg, I., McNaughton, B.L. and Sejnowski, T.J., “Interpreting 

Neuronal Polulation Activitiy by Reconstruction: Unified Framework With 
Application to Hippocampal Place Cells,” Journal of Neurophysiology, vol. 79, 
pp. 1017-1044, Aug. 1998. 

 


