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Abstract

Visual motion perception plays a vital role in the process of behavioral computations that are
performed during the interaction of organisms with their environment. In the early stages of mo-
tion detection, visual information is processed by a large number of elementary motion detectors
to obtain a representation of the visual field in terms of local motion vectors. In this work, we
present analog VLSI implementations of motion detection algorithms that are based not only on
biological models but also on the computational properties of motion perception. First, we de-
scribe monolithic implementations of hysteretic winner-take-all and nonlinear-differentiator based
algorithms. These compact elementary motion detector models can reliably be used to obtain high
resolution sensors. Second, we explain multi-chip implementations of biomimetic intensity-based
models, namely Adelson-Bergen, Hassenstein-Reichardt, and Barlow-Levick models. By employing
a modular strategy, these algorithms are successfully implemented without much sacrifice of the fill
factor in the front-end chip. In addition, we describe an obstacle avoidance algorithm that is realized
by incorporating a multi-chip version of the Adelson-Bergen algorithm with centering behavior and
time-to-collision computation. In this way, the overall system can successfully acquire clues about
the structure of its environment so that collisions can be effectively avoided. This system might be
employed in building a robot that can navigate in complex cluttered environments.
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Chapter 1

Introduction

The visual system provides a wealth of information that has genuine behavioral importance for
organisms in that it enables them to survive within their environment and achieve evolutionary
success. Although organisms have different perceived truth of their habitats they are anatomically
and physiologically specialized in obtaining different visual clues provided by their environment.
They adopt a variety of biological strategies in dealing with complex and dynamic visual tasks.
Within these strategies, motion detection serves the most important function that is ubiquitously
employed in organisms to process visual information. Flies employ motion information in their
behavioral tasks such as gaze control, flight stabilization, and tracking [22].

As with biological systems, perception of motion information occupies a vital role in behavioral
tasks achieved by artificial systems. Despite its numerous shortcomings, perceived motion virtually
never fails to provide information about the outside world that has genuine behavioral importance
[21]. It is utilized for a variety of purposes including tracking, collision avoidance, object recognition,
time-to-flight computation, guidance, balance, and postural control.

In building biologically inspired architectures, it always has to be taken into consideration that
biological models are by their nature continuous-time systems and they operate by employing a
massively parallel processing strategy. These biological principles can be efficiently utilized in visual
computations by employing an implementation technology that allows designers to realize layered
parallel structures and power- and space-efficient architectures. In contrast to other sensory compu-
tations, optic flow computation is a very intensive process that is constrained by power consumption,
and employing such technology definitely improves the performance of built systems. Conventional
processors that are discrete-time and serial in operation fail to meet these criteria and are there-
fore not well-suited for building biologically inspired visual architectures. In addition, conventional
design approaches in image processing that are implemented by employing a CCD camera together
with a DSP processor cause problems such as an image transfer bottleneck, temporal aliasing and
high power consumption. These systems work at high frequencies to deliver image information in a
timely way and in achieving this they have to consume considerable amounts of power. Whereas,
an integrative approach by analog VLSI technology and neuromorphic design principles makes in-
tensive visual computations possible to be realized in power and space efficient systems. In contrast
to conventional designs, these systems are data driven, that is, the output is sampled when there is
a demand. Hence they consume little power and yield temporal aliasing-free computation.

Inspired by biological models in the visual pathways of organisms and by computational prop-
erties of visual motion perception, a variety of visual motion sensors, which consume little power
and work in real time, have been developed to solve problems faced in optical flow computation.
Although these sensors are built to process motion information in different ways, they all have to
meet a certain number of requirements determined by computational principles of motion detection
[11].

• Two visual inputs: Motion is a vector that is represented by two points in the visual field
and therefore needs two input channels for its motion processing. For instance, input from a
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single visual sampling point does not suffice to distinguish a dark bar that crossed its receptive
field from the left to the right from one that crossed from the right to the left.

• Non-linear interaction: In order to preserve the temporal sequence information obtained
from input signals, a nonlinear interaction must be incorporated into motion processing stages.
Otherwise the time-averaged output of a motion detector will be equal to its response to its
time-averaged input signals. Therefore, motion processing with a linear interaction between
input channels cannot be directionally selective in the mean.

• Asymmetry: The input signals sensed by two different input channels of a motion detec-
tor have to be processed in a slightly different way. Otherwise the input channels could be
interchanged without affecting the motion output. It is then no longer possible to discrimi-
nate which channel was excited first and which later. Accordingly, the detector would not be
directionally selective.

1.1 Motion detection algorithms and implementations

Motion computation methods can be categorized into two classes, namely, feature-tracking and
intensity-based algorithms.

Feature tracking algorithms detect temporal and spatial features and track them to compute the
optical flow field. Evidence obtained from recordings of neurons in the visual pathway of different
organisms has proved the existence of feature detectors [5], [52]. It has been verified that these neu-
rons require some specific pattern of excitation. Based on this evidence, a variety of feature tracking
algorithms have been developed. These algorithms can be classified into spatial and temporal feature
tracking algorithms.

Spatial feature tracking algorithms are designed to utilize the spatial information in image se-
quences to compute the optical flow field. Spatial features like edges are tracked in an image sequence
and based on the attained correspondence between the image sequences, the velocity of the feature
can be computed [3], [57]. This algorithm is especially popular in software-based implementations
because of the discrete nature of processing in feature tracking. Etienne-Cummings et al. [24] im-
plemented this algorithm in hardware with a sensor that computes the optical flow field by tracking
the appearance and disappearance of edges at neighboring pixels on its focal plane. Also, Indiveri
implemented a monolithic vision chip that detects and tracks the position of the feature with highest
spatial contrast [41].

In contrast to spatial feature tracking algorithms, temporal feature tracking algorithms utilize
intensity changes in the optical image to compute its motion. Hardware implementations of these
algorithms generally employ temporal edge detectors in order to obtain spike/pulse like responses
to sudden changes in the intensity level of the image. Kramer [46] implemented a temporal feature
tracking sensor by employing the FTI (facilitate, trigger and inhibit) algorithm that calculates the
time of travel by utilizing the interaction between three adjacent pixels. Higgins et al. [34] demon-
strated two vision sensors based on the ITI (inhibit, trigger and inhibit) and the FTC (facilitate,
trigger and compare) algorithms. Moreover, a variety of velocity sensors have been developed by
using the FS (facilitate and sample) algorithm [15], [47], [48].

Similar to feature-tracking algorithms, intensity based methods are categorized into two classes:
gradient and correlation based algorithms.

The gradient scheme was first proposed in the field of engineering in order to calculate the speed
of moving objects from a television signal [26], [54]. It estimates local motion by the computation of
simultaneously measured spatial and temporal changes in the local light intensity of a moving image.
This scheme in its mathematical form obtains an exact measurement of the local velocity δx/δt by
dividing the temporal gradient δI/δt by the respective spatial gradient δI/δx of the pattern (x and
t refer to the spatial variable and time, respectively; I denotes the light intensity) [11]. Hardware
implementations of this algorithm have been demonstrated by Tanner et al. [78] and later by
Deutschmann et al. [16].
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Correlation based algorithms estimate the motion of an optical image by correlating intensity
changes at different image regions. The computation is achieved by the interaction between the
response of a visual sampling point and a delayed version of its neighboring sampling point response.
The most popular correlation-based models are the Adelson-Bergen spatiotemporal energy model
[2], the Hassenstein-Reichardt correlation model [31] and the Barlow-Levick motion detection model
[6]. These models are utilized respectively to describe primate cortical complex cells [33], [60] to
explain the optomotor response in flies [31] and direction selectivity in rabbit retina [6]. A variety of
hardware implementations based on these algorithms have been realized. The Reichardt correlation
model was implemented in hardware to estimate the velocity of image motion [4], [30], [66], [67].
In addition, Higgins and Korropati [37] implemented an analog VLSI sensor based on the Adelson-
Bergen algorithm, and Benson and Delbruck [7] utilized null inhibition phenomena that are based
on the Barlow-Levick model to implement an analog VLSI vision sensor. The Barlow-Levick model
was realized in its correlation-based form and implemented in an analog VLSI vision sensor (R.
Deutschmann, unpublished data, 2002).

1.2 Monolithic and multi-chip implementations

Motion detection algorithms can be realized in analog VLSI hardware implementations by using
monolithic and multi-chip design strategies.

A monolithic motion sensor is defined as a single chip that has the photoreceptors and mo-
tion computation circuitry located on the focal plane. In this kind of implementation, integrating
neuromorphic design principles with the capabilities of VLSI hardware systems allows designers to
implement extremely efficient systems in terms of power and space. In addition, the fill factor of
monolithic sensors can be maximized if the space used for each pixel is minimized. The fill factor is
defined as the ratio of the photoreceptor area to the overall space used for motion computation in
each pixel. Therefore, the main aim in this type of implementation is to decrease the computation
performed in each pixel while maintaining a reliable and robust implementation of algorithms.

A monolithic implementation is composed of a 2-D array of pixels that perform motion compu-
tations and serial pixel scanners by which all the pixels can be read individually. By incorporating
the scanners, real-time motion outputs can be read and raw data from photoreceptors can be easily
obtained. This kind of implementation has been exploited to implement different motion computa-
tions in analog VLSI vision chips. For instance, heading direction and time-to-contact computations
were realized successfully in monolithic vision chips by using this design strategy in building system
level architectures [43].

In contrast to monolithic implementations, multi-chip sensors apply a modular strategy that
helps to split the motion computation into different processing stages and realize them in multiple
chips. In this study, we employed this strategy to realize intensity-based visual sensors that are
composed of one photosensitive sender chip and one motion computing receiver chip. This kind
of implementation is very efficient in increasing the computational capabilities of sensory systems
and decreasing the computational overload in the front-end sensing stage. It employs an interchip
communication protocol that is well-suited for achieving the communication between neuromorphic
modules. This communication protocol was proposed by Mahowald [56] as a circuit analogy to the
optic nerve and later Boahen [44] formalized and improved this protocol.

The multi-chip design strategy was successfully employed by Higgins et al. [36] to perform com-
plex motion computations by incorporating a photosensitive sender chip which detects and transmits
the position of moving spatial edges, and a receiver chip which performs 2D optical flow vector field
computation by using the edge information. Boahen [9] used this strategy to implement binocular
disparity-selective elements by interfacing two silicon retinas to three receiver chips. Moreover, Ve-
nier [81] implemented an orientation selective silicon retina with asynchronous interface. See [35]
and [36] for a review of modular multi-chip neuromorphic architectures.
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1.3 Obstacle avoidance

Visual information possesses different motion clues that assist organisms to employ parsimonious
and minimalist strategies in dealing with different behavioral tasks. Recent studies on insect vision
have elucidated the fact that insects can adapt to specific behavioral tasks by processing different
spatiotemporal properties of visual information and capturing natural clues provided by their envi-
ronment [23]. In this thesis, we focus on anatomical and physiological properties of flying insects in
dealing with obstacle avoidance and develop a biologically inspired artificial system based on these
properties.

Flying insects achieve obstacle avoidance and visual course control by employing mostly their
visually guided behavioral mechanisms. Bees accomplish their visual course control by balancing
the image velocity on their two eyes [74]. In contrast to bees, the anatomy of locusts is specialized
in avoiding rapidly approaching objects [27] and therefore their largest motion detector is dedicated
for object avoidance. In pigeons, similar responses have been obtained from nucleus rotundus [77].
This nucleus responds best to approaching objects that are on a collision course. It contains neurons
that are sensitive to angular velocity and this information is used in time-to-collision computation
[83].

These neural mechanisms that participate in collision avoidance systems can be classified into
three groups: (1) the centering response which is mediated by a direction insensitive movement
detecting system, (2) the turning response which prevents collision with obstacles such as walls and
(3) the escape response which is initiated by the lobula giant movement detector in locusts to avoid
predators. In this context, the second and third groups are studied under the same topic since they
can be successfully incorporated to develop more robust artificial behaviors to avoid collisions.

1.4 Organization of the thesis

In this thesis, we present a variety of analog VLSI motion sensors that are implemented by exploiting
monolithic and multi-chip design strategies. In addition, their algorithms and circuit level imple-
mentations are explained in detail. Lastly, a system implementation used for obstacle avoidance is
described. The thesis is organized as follows.

In the second chapter, we explain a diversity of VLSI circuit blocks that have been employed in
the design of motion sensors. In the third chapter, we describe two different monolithic visual motion
sensors that are realized by hysteretic winner-take-all and nonlinear-differentiator based algorithms.
In the fourth chapter, we present multi-chip implementations of the Adelson-Bergen spatiotempo-
ral energy model, the Hassenstein-Reichardt correlation motion algorithm and the Barlow-Levick
model. In the fifth chapter, we describe an obstacle avoidance algorithm based on the system level
implementation of the Adelson-Bergen multi-chip sensor integrated with centering and escape be-
haviors. Finally, we discuss the advantages and disadvantages of the visual motion detector models,
the obstacle avoidance system and their implementations.
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Chapter 2

Analog VLSI building blocks

In this chapter, we explain a variety of analog VLSI circuit building blocks that we employed in
our design of different neuromorphic architectures. Neuromorphic implementations are very suitable
to realize biological models since transistors and neuron channels have similar characteristics [58].
Firstly, the distribution of carriers in transistors and neuron channels depend on the Boltzmann
distribution. Secondly, ionic conductance is exponentially dependent on the voltage difference across
the neuron membrane. Similarly, in the subthreshold operation mode a transistor has a current flow
that is exponentially dependent on the voltages applied to its terminals.

High density and low power designs can be easily achieved with MOSFET transistors operating
in the subthreshold region. Especially integrating this advantage with the capabilities of current
mode design, which is conceived in building neuronal blocks, makes large and complex biomimetic
architectures easy to realize. In this study, we explain the basics of MOSFET operation and its
characteristics for both above-threshold and subthreshold regions. After that we describe the cir-
cuit details of the adaptive photoreceptor, transconductance amplifier, rectifier, current-comparator,
absolute-value, squaring, nonlinear differentiator, winner-take-all and multiplier building blocks that
we utilized to design a variety of motion detection sensors.

2.1 MOSFET operation

The metal-oxide-semiconductor field-effect transistor (MOSFET) is a four-terminal device with the
terminals designated as gate, drain, source and substrate. The basic structure of a MOSFET is
illustrated in Figure 2.1. An n-type MOSFET consists of a p-type silicon substrate and n+ type
drain and source regions formed in the substrate. The gate is usually realized by a metal or highly
doped polysilicon and separated from the substrate by silicon dioxide [79]. In contrast to the n-type
MOSFET, the p-type MOSFET has an n-well as a substrate and p+ type drain and source regions.

In the operation of an n-type MOSFET, when there is no voltage present at its gate, the p-type
silicon substrate is either in accumulation or in depletion and no current can flow between source
and drain. Hence, the device acts like two back-to-back p-n junction diodes. In the second case when
a reasonable amount of positive voltage is applied to the gate, the silicon surface of the transistor
is inverted and a channel between source and drain is formed. In addition, if there is a voltage
difference between the source and the drain terminals of the transistor a current flows through this
channel.

The operation of an n-FET transistor can be divided into three regions, namely, cutoff, subthresh-
old (weak inversion) and above-threshold. In the subthreshold region current flows by diffusion while
in the above-threshold regime current flows by drift.

The operation region of a MOSFET transistor is determined by its gate-to-source voltage, VGS ,
relative to its predetermined threshold value. The threshold voltage, Vt is defined as the gate voltage
when the surface potential or band bending reaches 2ψB (where 2ψB = (2kT/q)ln(Na/Ni)) and the
silicon charge is equal to the bulk depletion charge for that potential [79].
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(a) (b)

Figure 2.1: (a) Cross section of the MOSFET (b) Ids versus Vgs of an n-type MOSFET, the threshold
voltage (Vt) is found at the voltage where the measured Ids is half of the Ids computed from the
extrapolated exponential (Reproduced from [1] without permission).

If the gate-to-source voltage VGS of an n-FET is bigger than the threshold voltage Vt then
the transistor operates in the above-threshold region. This region itself has two operation modes
depending on the value of the drain-to-source voltage, VDS . For VDS < VGS − Vt, the transistor
exhibits an ohmic characteristic and the relation between the drain-to-source current, IDS , and the
drain-to-source voltage VDS for a constant VGS , where VGS > Vt, becomes as follows:

IDS = µCox
W

L
[(VGS − Vt)VDS − V 2

DS

2
] (2.1)

where µ is the mobility of electrons, Cox is the oxide capacitance, W and L are the width and length,
respectively, of the transistor. If VDS > VGS − Vt, the transistor saturates and the relation between
the drain-to-source current, IDS , and the gate-to-source voltage, VGS for VGS > Vt reduces to the
following expression:

IDS =
µCox

2
W

L
(VGS − Vt)2 (2.2)

In the second case, when VGS < Vt, the n-FET operates in the subthreshold region. As is the
case in the above threshold region, this operation mode also has two operation modes that determine
the relation between IDS and the transistor voltages. The general equation that holds for all these
cases can be shown to be as follows:

IDS = I0e
κVG/VT (e−VS/VT − e−VD/VT ) (2.3)

where VT is defined as the thermal voltage and is equal to kT/q = 25mV at room temperature, and

κ is the back gate coefficient. In addition, I0 is a transistor parameter and I0 = W
L qDNφe

−φ0
kT/q . For

VDS > 4kT/q, the transistor saturates and the drain-to-source current IDS becomes,

IDS = I0e
(κVG−VS)/VT (2.4)

In the following sections, we describe a variety of circuit blocks that utilize the explained char-
acteristics of the MOSFET.
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(a) (b)

(c)

Figure 2.2: The adaptive photoreceptor circuit and its characteristics. (a) The adaptive photorecep-
tor circuit by Liu [68]. (b) The response of the circuit to input stimulus with increasing intensity.
(c) The frequency response of the adaptive photoreceptor over five decades of intensity level. The
numbers on the curves indicates the log intensity of mean value. Reproduced from [68] without
permission.

2.2 Adaptive photoreceptor

The adaptive photoreceptor circuit is often incorporated as the main circuit block in biomimetic
visual sensors. It is based on a model of the vertebrate retina and developed by Delbruck [14] and
later improved by Liu [68]. It adapts to the local light illumination level on slow time scales (a few
seconds) and provides a high gain for transient signals that are centered on its adaptation point. In
addition, it adapts to the intensity level for over six orders of magnitude in light amplitude variation
and yields a continuous-time output. This circuit can be realized with 6 transistors, two explicit
capacitors and a photodiode (Figure 2.2a). The responses of the circuit to square wave light inputs
for increasing intensity levels are illustrated in Figure 2.2b.

In the circuit shown in Figure 2.2a, transistors M3 and M4 are used as an inverting amplifier to
amplify the input signal. The output Vprout is fed back to M1 through the capacitor divider formed
by the capacitors C1 and C2 with a gain of C2

C1+C2
. In this process, C2 is utilized as a capacitor

where state of adaptation is stored as Qfb. Transistor M2 is employed as an adaptive element and
slow adaptation of Vprout to Vfb is achieved by a feedback connection to transistor M1.

Assuming the photoreceptor responds to small changes in the photodiode current (iin) at its
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output node (vprout), the transfer function, vprout/iin, of the photoreceptor circuit can be found by
using small-signal approximation.

vprout

iin
=

1
gm1

[
s(τld+τl)+ga/gm3

sτl+ga/gm3

(sτr + 1/κ)(1/Aamp + sτdl + sτld

Aamp(sτl+ga/gm3)
) + 1

] (2.5)

where ga is the output conductance of transistor M2, Cr is the parasitic capacitance at the gate
of M3 and Aamp = gm3

gd
. In this thesis, we represent the transconductance as gm and the output

conductance of the circuit as gd. Hence, the time constants are defined as follows:

τl =
Cl

gm3
; τr =

Cr

gm1
; τld =

Cd

gm5
(2.6)

The transfer function of the circuit verifies the experimental results shown in Figure 2.2c. The
photoreceptor exhibits a band-pass characteristic for high intensity levels and shows a low-pass
characteristic for lower intensity levels in the frequency range from 1 to 100 Hz. Its cut-off frequency
depends on the intensity level of the input signal and its gain for flat regions is set by the capacitive
ratio AC = C1+C2

C1
.

For short time scales, the adaptive photoreceptor behaves like a high gain inverting amplifier of
VSM1 with a gain A = gm( ronrop

ron+rop
) where ron is the output resistance of transistor M3 and rop is

the output resistance of transistor M4. For long time scales, Vprout adapts to Vfb and therefore its
output is determined by its adaptation state. The characteristics of the adaptive photoreceptor can
be summarized as follows:

Adapted signal:

Vfb = κ−1[VGSM3 + VT ln(
IDSM1

I0
)] (2.7)

Transient amplification:

AC =
C1 + C2

C1
(2.8)

Transient signal:

Vprout = ACVfb (2.9)

Small signal response:

dVprout = ACVT
A

κA− 1
dIDSM1

IDSM1

≈ AC
VT

κ

dIDSM1

IDSM1

(2.10)

where A is the amplification gain of the inverting amplifier. If we neglect the DC offsets of VGSM3

and Vprout, then Vprout and Vfb can be approximated as follows:

V ′
prout =

VT

κ
AC ln(

IDSM1

I0
) (2.11)

V ′
fb =

VT

κ
ln(

IDSM1

I0
) (2.12)
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Vbias

V1 V2

Iout

M5M4

M3M2

M1

(a) (b)

Figure 2.3: (a) Transconductance amplifier circuit. (b) Current response to a range of differential
input voltages. Reproduced from [42] without permission.

2.3 Differential transconductance amplifier

The transconductance amplifier circuit illustrated in Figure 2.3a is used to convert differential input
voltage signals to a current output. It provides a saturated nonlinear current output. This circuit
can also be used as a differential voltage amplifier if instead of the current output Iout, the drain
voltage of transistor M3 is taken as an output.

The transconductance amplifier can operate in the above-threshold and subthreshold regions.
In subthreshold, the current response of the circuit to a differential input voltage can be found by
analyzing the circuit using subthreshold equations (see Section 2.1). Considering the voltages V1

and V2 illustrated in Figure 2.3a, the current through transistors M1, M2 and M3 can be found as
follows:

IDSM2
= I0e

κV1−VDSM1
VT (2.13)

IDSM3
= I0e

κV2−VDSM1
VT (2.14)

IDSM1
= IDSM2

+ IDSM3
= I0e

κVbias
VT (2.15)

where VDSM1 is the drain-to-source voltage of transistor M1 and Vbias is the gate-to-source voltage
of transistor M1. The current through transistor M1 can be derived in terms of input voltages V1

and V2 as in the following:

IDSM1
= I0e

−VDSM1
VT (e

κV1
VT + e

κV2
VT ) (2.16)

From this equation VDSM1 can be found and this helps to define the currents IDSM1
and IDSM2

in terms of the input voltages V1 and V2 in the following way:

e
−VDSM1

VT =
IDSM1

I0

1

e
κV1
VT + e

κV2
VT

(2.17)



11

IDSM2
= IDSM1

e
κV1
VT

e
κV1
VT + e

κV2
VT

(2.18)

IDSM3
= IDSM1

e
κV2
VT

e
κV1
VT + e

κV2
VT

(2.19)

The transconductance amplifier shown in Figure 2.3a obtains its output current by subtracting
the currents IDSM2

and IDSM3
as follows:

Iout = IDSM2
− IDSM3

= IDSM1

e
κV1
VT − e

κV2
VT

e
κV1
VT + e

κV2
VT

(2.20)

Iout = IDSM1
tanh(

κ

2VT
(V1 − V2)) (2.21)

For small voltage differences the circuit yields a linear relationship between the differential input
voltage (V1 − V2) and the current output Iout, but for larger voltage differences the output current
of the transconductance amplifier saturates as depicted in Figure 2.3b. For |V1−V2| < 200mV , Iout

can be reduced to an expression,

Iout ≈ gm(V1 − V2) (2.22)

The transconductance (gm) and output conductance (gd) of the amplifier is

gm =
IDSM1

κ

2VT
(2.23)

gd = − δIout

δVout
≈ IDSM1

VE
(2.24)

where VE is the Early voltage of transistors M3 and M5.
When the transconductance amplifier is used as a differential voltage amplifier, the voltage out-

put, which is the drain voltage of M3, can be found by considering the conditions applied by the
differential input voltage. Assuming that transistors M2 and M4 are always in saturation, then the
voltage limitations can be expressed as follows:

• To keep M5 is in saturation

Vout < VDD − 4VT (2.25)

• To keep M3 in saturation

Vout > κ(max(V1, V2)− Vbias) + 4VT (2.26)

The saturation conditions of transistors M3 and M5 restrict the output voltage range.
In the above threshold region, the current output of the transconductance amplifier can be found

as follows:

Iout =
β

2
(V1 − V2)

√
4IDSM1

β
− (V1 − V2)2 (2.27)
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where β = µCox
W
L . In this operation mode, for |V1−V2| <

√
2IDSM1

β , the transconductance becomes

gm =
√

βIDSM1
(2.28)

When this circuit is used as a differential voltage amplifier in the above threshold operation
mode, the voltage output and amplification gain can be both found as follows:

Vout = A(V1 − V2) (2.29)

A =
dVout

d(V1 − V2)
=

gm

gd
≈

√
β

IDSM1

VE (2.30)

where VE is the Early voltage. As can be observed from the formula, the open-circuit voltage gain,
A, increases with the Early voltage.

2.4 Full-wave rectifier and current comparator

A full wave rectifier is a current mode circuit used to separate a bidirectional input current into
two unidirectional currents that represent the negative and positive parts of the input current. The
full-wave rectifier circuit is illustrated in Figure 2.4a. The output currents of this circuit can be
formulated in terms of the input current Iin as follows:

Ipositive =
{

Iin if Iin > 0
0 if Iin < 0

Inegative =
{

0 if Iin > 0
|Iin| if Iin < 0

where Inegative flows into M1 and M4 and Ipositive flows out of M2 and M3. This circuit is used for
bidirectional input currents that provide or extract current to/from the circuit. If an input current
flows into the rectifier then transistor M1 opens its path and this current flows into transistor M4. In
this case the source-to-gate voltage VSG of transistor M1 increases to supply enough current. This
causes transistor M2 to close because the gate-to-source voltage VGS of this transistor goes to some
value smaller than zero relative to Vfwrbias. In the second case, when the input current flows out of
the circuit, the upper path provided by transistors M2 and M3 opens and the other path formed by
transistors M1 and M4 closes. The most important transistors in the operation of the circuit are M1

and M2, because they compare the voltage effect of the input current with the bias voltage Vfwrbias

and determine which path to open. Furthermore, this circuit works quite efficiently because the VGS

of transistor M2 and the VSG of transistor M1 can not be positive at the same time and therefore
only one path becomes open for each case.

In Figure 2.4b, the current comparator circuit is shown. This circuit is used to compare the
positive and negative parts of a bidirectional input current. The bidirectional current is separated
into positive and negative currents by employing a full-wave rectifier circuit, and the voltage input-
output characteristic of the overall circuit is improved by using two inverter circuits. For the reason
that the full-wave circuit is a conditional circuit, the negative and positive currents cannot both be
bigger than zero at the same time, i.e., when one of the currents is bigger than zero, the other one
has to be zero. These currents are mirrored and then compared. When one of the currents becomes
bigger than the other one, the drain-to-source voltage VDS of the transistor carrying the bigger
current goes down in magnitude to limit or shut down the current from that transistor. Hence it
can be concluded that the existence of a negative or positive current determines the voltage output
at the input of the first inverter. The final output will be VDD if the input current flows out of the
circuit, and will be 0 if the current flows into the circuit.
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Iin Vfwr
Vout

(a) (b)

Figure 2.4: (a) The full wave rectifier circuit. (b) The current comparator circuit.

2.5 Absolute-value and squaring circuits

The absolute value circuit shown in Figure 2.5a was inspired by an above-threshold circuit of Bult and
Wallinga [12]. This circuit takes a bidirectional current as an input and performs the computation
by operating conditionally.

In the case when an input current flows out of the circuit, the drain-to-source voltage VDS

of diode-connected transistor M2 increases while the source-to-gate voltage VSG of transistor M1

decreases relative to the gate voltage Vabs and eventually retards any current flowing into it. In
the other case, when current flows into the circuit, the VGS of transistor M2 decreases to close that
transistor, and at the same time the VSG of transistor M1 increases and opens the path for the
current to flow. In this way it provides a conditional path for the bidirectional current to flow out
of the circuit. In both cases, the output current is obtained as directed out of the circuit. The final
output can be represented as follows:

Irect = |Iin| (2.31)

The squaring circuit is a translinear circuit that computes the square of input current signals [80].
Its circuit schematic is shown in Figure 2.5b. As illustrated in the figure, the input current flows
into node N3 and the squared current Isq flows into node N5. The relation between the input and
output currents can be obtained by utilizing the subthreshold I-V characteristics of MOSFETs and
translinear principles [80].

Let the voltage at node N3 be Va and the voltage at node N4 be Vb. If we neglect the Early
effect, the currents through transistors M4, M5 and M6 can be formulated as follows:

I4 = I0e
κ(Va−Vb)

VT (2.32)

I5 = I0e
κ(Vb)

VT (2.33)

I6 = I0e
κ(Va)

VT (2.34)

where VT is defined as the thermal voltage and equal to kT/q = 25mV at room temperature, and
κ is the back gate coefficient. By arranging the above terms and using the equalities I4 = I5 = Iin

and I6 = Isq, we can obtain the following expressions:

Iin = I0e
κ(Va)

VT e
κ(−Vb)

VT (2.35)
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Figure 2.5: The full wave rectifier and normalized squaring circuit. (a) The absolute value circuit
used to rectify the incoming bidirectional current Iin. The output current Irect is rectified and flows
out of the node N2. (b) The squaring circuit. It receives the rectified current Iin as the input and
the output is a squared current Isq at the node N5. (c) The normalized squaring circuit. The current
level in the circuit can be adjusted using the bias voltage Vnorm.

Iin = I0e
κ(Vb)

VT (2.36)

Isq = I0e
κ(Va)

VT (2.37)

By combining the above equations we can find the following final expression:

Isq =
I2
in

I0
(2.38)

The circuit performs a squaring operation and scales the output current with I0. However, we do
not have an explicit control on the magnitude of the output current, Isq. If the current level is high
after squaring, then the transistor M6 may operate in above threshold and the above formula will
not hold. In order to prevent this case from happening, an alternative squaring circuit illustrated in
Figure 2.5c can be employed.

The normalized squaring circuit shown in Figure 2.5c yields a relation between the input current
Iin and the squared output current Isq in terms of the normalizing current Inorm.

Let the voltages at node N3, N4 and N5 be Va, Vb and Vc respectively. The expressions for the
currents through transistors M4, M5, M6, M7 and M8 become as follows:

I4 = I0e
κ(Va−Vb)

VT (2.39)

I5 = I0e
κ(Vb)

VT (2.40)

I6 = I0e
κ(Va−Vc))

VT (2.41)

I7 = Inorm = I0e
κ(Vnorm)

VT (2.42)
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I8 = I0e
κ(Vc)

VT (2.43)

Since I4 = I5 = Iin, I6 = I7 and I8 = Isq,

Vc =
VT

κ
ln

Isq

I0
(2.44)

Va = 2Vb (2.45)

Isq =
I2
in

Inorm
(2.46)

By utilizing the normalized squaring circuit we can have control over the squared current Isq and
limit the power consumption.

2.6 Nonlinear differentiator

The nonlinear differentiator circuit shown in Figure 2.6a operates by utilizing the adaptive nonlinear
filter characteristic of a diode-connected transistor connected in parallel with a capacitor. The most
crucial property of this circuit is that it provides a decaying pulse response with a small time constant
when its output voltage is large and a large time constant when its output voltage is small.

In Figure 2.6c, a diode-connected transistor in parallel with a capacitor is illustrated. The
capacitor current Ic depends on capacitor voltage Vout,

Ic(t) = C
δVout(t)

δt
(2.47)

In the subthreshold region, the transistor has an I-V characteristic that can be formulated as
follows:

Im(t) = I0e
κVout(t)

VT (2.48)

By combining Equations 2.47 and 2.48, the currents in this circuit can be written as,

Iin(t) = Im(t) + Ic(t) (2.49)

Iin(t) = I0e
κVout(t)

VT + C
δVout(t)

δt
(2.50)

The initial condition of the circuit at t = 0,

Iin(0) = I0e
κVout(t=0)

VT + C
δVout(t)

δt

∣∣∣
t=0

(2.51)

When the input current Iin is switched off, the capacitor discharges through the diode connected
transistor. For t > 0,

Im(t) = −Ic(t) (2.52)

I0e
κVout(t)

VT = −C
δVout(t)

δt
(2.53)
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Iout
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Figure 2.6: The nonlinear differentiator circuit and its equivalent circuits are illustrated for different
conditions. (a) The nonlinear differentiator circuit is shown. In this circuit V1 and V2 represent
the input voltages and Iout is the output current of the circuit. (b) The equivalent circuit of
the nonlinear differentiator circuit that is used to show the relation between Iin and Iout. (c)
The adaptive nonlinear filter formed by a diode-connected transistor connected in parallel with a
capacitor. This circuit is used to analyze the nonlinear differentiator circuit when M2 is shorted.

−I0

C
δt = e

−κVout
VT δVout (2.54)

Integrating both sides,

−I0

C
t = −VT

κ
e
−κVout

VT

∣∣∣
Vout=Vout(t=0)

Vout=Vout(t)
(2.55)

κI0

CVT
t = e

−κVout(t)
VT − e

−κVout(t=0)
VT (2.56)

Vout =
VT

κ
ln

( e
κVout(t=0)

VT

1 + κI0e
κVout(t=0)

VT

CVT
t

)
(2.57)

By using Equation 2.48, for t > 0, Im(t) can be expressed as follows:

Im(t) =
I0e

κVout(t=0)
VT

1 + κI0e
κVout(t=0)

VT

CVT
t

(2.58)

For t À CVT

κI0
e
−κVout(t=0)

VT , this circuit becomes independent of the initial output voltage, and the
output current and voltage become

Im(t) =
CVT

κt
(2.59)

Vout(t) =
VT

κ
ln(

Im(t)
I0

) =
VT

κ
ln(

CVT

κI0t
) (2.60)
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In this study we integrate this property of the adaptive nonlinear circuit with a differential
amplifier to build a differentiator circuit. This circuit is illustrated in Figure 2.6a and utilized to
take the derivative of the amplified difference of two input signals. It extracts the negative edge of
the differential amplifier output. At the crossing point of the input signals it yields a decaying pulse.

The differential amplifier sets the conditional responses and timing of the circuit. When V1 is
bigger than V2, the differential voltage output will go high (close to Vdd). In this time interval, since
the voltage on capacitor C will be less than the differential amplifier voltage output, transistor M2

will get closed and the current output Im of the circuit diminishes. On the other hand, transistors
M3 and M4 open their path for a small time interval to charge the capacitor. The current output
of these transistors flows into the capacitor and charges it to a certain voltage. In the second case
when V1 is smaller than V2, the differential voltage output goes low (close to zero). This will cause
transistors M3 and M4 to close their path and transistors M6 and M7 to open their path to let the
current stored in the capacitor to flow through these transistors. This case is illustrated in Figure
2.6c. In this circuit, the upper path provided by transistors M3 and M4 is closed and therefore can
be ignored in the analysis. In addition, IC becomes negative since VC is bigger than Vdiffamp and
Iin is zero. The charge stored in the capacitor flows into M1 and the currents through capacitor and
transistor M1 are related as Im = −IC . This circuit configuration can be related to the case where
a diode-connected transistor is in parallel with a capacitor (Figure 2.6c). If we ignore the effect of
pass-transistor M2, the capacitor and transistor M1 form the same configuration except this time
the source voltage of transistor M1 is Vgain. For t > 0, the output current of the circuit Iout becomes

Im(t) =
I0e

κVC (t=0)
VT e

Vgain
VT

1 + κI0e

κVC (t=0)
VT

CVT
t

(2.61)

For t À CVT

κI0
e
−κVC (t=0)

VT (when the circuit becomes independent of the initial voltage VC(t = 0)),
the current output Iout can be formulated as follows:

Iout(t) =
CVT

κt
e

Vgain
VT (2.62)

The simulated response of the circuit Iout is illustrated in Figure 2.7 for the case where a 10Hz
sinusoidal input signal is introduced as a stimulus at V1 while the second input, V2, is held constant.

2.7 Winner-take-all circuit

The winner-take-all circuit shown in Figure 2.8a is a current mode circuit that was inspired by
the inhibitory mechanisms present in the nervous system. This circuit was originally designed and
presented by Lazzaro [49]. It is advantageous in terms of power consumption and silicon area usage
since it processes input signals by using very few transistors and interconnections. Hence it is
preferred in a wide variety of applications that utilize nonlinear inhibition mechanism [17], [38], and
[76].

The hysteretic winner-take-all circuit (Figure 2.8b) is a task specific version of the winner-take-all
circuit and was proposed by Deweerth et al [18]. It allows the winning input to maintain its status
without having to reset the network unless another input exceeds the sum of the winning and bias
inputs.

In this study, we employ a two-input winner-take-all circuit for motion computation. Therefore,
we explain the working principles of the circuits only for the two-input case. The simple winner-
take-all circuit (Figure 2.8a) compares two inputs and encodes the logarithm of the winner input.
The output of the circuit depends on the relative amplitude of the input currents.

Firstly, assuming that input currents Iin1 and Iin2 created by Vin1 and Vin2 are equal, transistors
M3 and M7 drive the same amount of current and by symmetry have same voltages VSD and VSG.
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Figure 2.7: Current output of the nonlinear differentiator circuit to a 10Hz stimulus.

This will result in having the same voltage outputs at Vwta1 and Vwta2. Therefore M2 and M6 share
the current Ib, which is set by the bias Vb.

IM2 = IM7 =
Ib

2
(2.63)

In the subthreshold region, if the drain-to-source voltage of transistor M4 is defined as VDS4,
then the currents flowing into transistors M3 and M7 can be shown to be as follows:

IM3 = IM7 = I0e
κVDS4

VT (2.64)

where I0 is the fabrication parameter and VT = kT/q. The voltage outputs at Vwta1 and Vwta2 can
be formulated as follows:

Vwta1 =
VT

κ
ln(

Iin1

I0
) +

VT

κ
ln(

Ib

2I0
) (2.65)

Vwta2 =
VT

κ
ln(

Iin2

I0
) +

VT

κ
ln(

Ib

2I0
) (2.66)

In the second case, when Iin1 is larger than Iin2, the equality of currents does not hold. At first,
any change in Iin1 causes the drain voltage of M3 to increase and since this voltage is also the gate
voltage of the transistor M2, its source voltage must go up to keep its current the same. In turn
this helps M3 drive δI more current. However, transistors M3 and M7 share the same gate voltage
and therefore any increase in this voltage has the same effect on the other side of the circuit. If
the gate voltage of transistor M7 increases while the input current is still Iin2, then Vwta2 decreases
to compensate, i.e., suppress the extra current. The Early effect helps the voltage Vwta2 decrease
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Figure 2.8: Schematics of the winner-take-all and hysteretic winner-take-all circuits and experimental
data for a two-input winner-take-all circuit. (a) The current mode two-input winner-take-all circuit.
(b) The current mode two-input hysteretic winner-take-all circuit. (c) Experimental data (circles)
and theoretical statements (solid lines) for a two-input winner-take-all circuit. Reproduced without
permission from [49].
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linearly for small δI currents; but for large δI values the drain voltage of M7 must decrease down
towards zero to force the transistor to leave saturation. For large δI values, the final result of the
winner output Vwta1 and the loser output Vwta2 can be shown to be as follows:

Vwta1 =
VT

κ
ln(

Iin1

I0
) +

VT

κ
ln(

Ib

I0
) (2.67)

Vwta2 ≈ 0 (2.68)

If the input current Im and the output voltage Vm are defined as the current and voltage levels
when the input currents Iin1 and Iin2 are equal, then these voltages and currents can be written
as Vwta1 = Vwta2=Vm and Iin1 = Iin2 = Im. By using these, for small δI differences between Iin1

and Iin2, if Vwta1 is the winner and Vwta2 is the loser, the voltage outputs that determine the linear
range of the circuit can be formulated as follows:

Vwta1 = VT ln
Iin1

Im
+ VT ln

VE

VT
+ Vm (2.69)

Vwta2 =
VT

2
+ Vm − VEln

Iin1

Im
(2.70)

As a result, the winner output will encode the logarithm of the associated input. The relation
between the output voltages Vwta1 and Vwta2 for different ratios of input currents is illustrated in
Figure 2.8c.

In contrast to the winner-take-all circuit, the hysteretic winner-take-all circuit (Figure 2.8b)
awards the bias current to the winner through transistors M2 and M3 or M8 and M9 and therefore
the loser input has to exceed the sum of the winner input and bias current to be able to become the
new winner. The race between the input currents happens in the same way as in the winner-take-all
circuit.

2.8 One and four-quadrant multipliers

In this section one and four-quadrant current mode multipliers are described. These circuits oper-
ate in the subthreshold region and therefore consume little power. They are employed to obtain
nonlinearities that are needed to implement excitatory and inhibitory connections in neuromorphic
applications.

The one-quadrant multiplier shown in Figure 2.9a can be analyzed in the subthreshold region
by using the translinear principle for the loop formed by transistors M3, M5, M7 and M8 [84]. The
currents of these transistors can be related as follows:

IM3IM5 = IM7IM8 (2.71)

where IM3 is the current Iin set by Vin. IM5 is set by Vw and IM7 is the bias set by Vb and therefore
IM5 = Iw and IM7 = Ib. The relation between these currents determine the value of the current
output.

Iout =
IinIw

Ib
(2.72)

The four-quadrant current multiplier illustrated in Figure 2.9b is used to multiply two bidirec-
tional input currents [13]. This circuit operates under the condition that |Iin1|, |Iin2| < Ib where
input currents can be positive or negative. As shown and formulated in [13], IR1 can be represented
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Figure 2.9: One and four-quadrant current mode multipliers. (a) One quadrant current mode weight
multiplier. (b) Four quadrant current mode multiplier.

by the currents IM3 and IM10 as follows:

IR1 = IM3 + IM10 = Ib + (Iin1 + Ib)(Iin2 + Ib)/Ib (2.73)

and the current flowing through the resistor R2 is IR2 and can be found by

IR2 = IM6 + IM13 = IM7 + IM11 = (Iin1 + Ib) + (Iin2 + Ib) (2.74)

The difference between these currents is

IR1 − IR2 =
Iin1Iin2

Ib
(2.75)

Assuming R1 = R2, then the output voltage Vout can be represented in terms of the input
currents as follows:

Vout = R(IR1 − IR2) = R
Iin1Iin2

Ib
(2.76)

In the implementation of the four quadrant multiplier, we used diode connected transistors to realize
R1 and R2.
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Chapter 3

Monolithic Implementations of
Analog VLSI Motion Sensors

In this work, we present two different visual motion sensors that are implemented by making use
of the monolithic design strategy. We describe their algorithms and circuit level implementations.
These chips were fabricated in a standard 1.5µm CMOS process and the die size used for all the
chips is 2.1× 2.1mm2. The MOSFETs involved in the computational stages of the models operate
in the subthreshold region to minimize the power consumption of the sensors. First, we present
direction and velocity sensors realized by a hysteretic winner-take-all based algorithm. Second, we
introduce a nonlinear differentiator based direction sensor.

3.1 Hysteretic winner-take-all based motion sensor

Motion computation methods are classified into feature tracking and intensity based algorithms.
Feature tracking algorithms extract spatial or temporal features in an optical image and track these
features to estimate their velocity. Intensity based algorithms utilize image irradiance directly to
compute the optical flow field. In this study, we present a novel algorithm that incorporates the
capabilities of feature tracking based methods in order to perform direction and interpixel transit
time computations.

Barlow and Levick [5] explained a mechanism for the direction selectivity found in the rabbit
retina. This retina requires inhibitory connections to achieve direction selectivity as shown in Figure
3.1. In this mechanism when a moving edge passes over two neighboring photoreceptors in the
preferred direction from left to right, the left photoreceptor is excited first, causing its direction
selective (DS) cell to fire and the right DS cell to be inhibited. After the edge reaches the right
photoreceptor, an inhibitory connection between the right photoreceptor and left DS cell retards
further output from the left DS cell. In the other case, when an edge is moving in the null direction
(right to left), the activated right photoreceptor causes the right DS cell to fire and retards the
left DS cell from firing. Each DS cell fires only when there is a motion in the direction that it is
sensitive to. Delbruck and Benson [7] implemented a direction selective silicon retina by utilizing
this mechanism. Basically, their implementation tracks the temporal features in the image and uses
them to inhibit the neighboring cells to find the direction of stimulus.

In the present work, we show that the null inhibition mechanism that is inherent in the winner-
take-all neural network can be used to realize the Barlow-Levick model and to compute an optical
flow field without requiring any temporal differentiation. In this way we obtain a robust motion
sensor that is independent of spatial and temporal frequency of the stimuli in the range of frequencies
determined by the frequency response of the photoreceptor.
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Figure 3.1: The Barlow and Levick model of direction selectivity.

3.1.1 Algorithm of the sensor

This motion computation algorithm is based on the idea that temporal changes in intensity levels
sensed by photoreceptors can be tracked to compute optical flow created by image motion. In case
of a positive or negative intensity change in two neighboring photoreceptors, direction information
can be extracted from the optical image by determining the first activated receptor. Once it is
determined, the challenge is to be able to inhibit the neighboring photoreceptor till the intensity
changes in both receptors go below some predetermined value or change their signs.

To be able to realize such a scheme, a method that is independent of the spatiotemporal frequency
of the stimulus should be developed. The algorithm illustrated in Figure 3.2 can potentially solve this
problem by storing the information of the first excited photoreceptor and inhibiting the neighboring
photoreceptor with the sum of the intensity changes of two photoreceptors.

Photoreceptors are arranged in such a way that there is always a ∆x spatial distance between
adjacent photoreceptors. In turn, this arrangement ensures that any image motion creates an ex-
citation in a photoreceptor with a time difference compared to the excitation in its neighboring
photoreceptor. The analog VLSI implementation of the motion algorithms discretize space into pix-
els and this helps to simplify the motion computation performed in each pixel. By using interpixel
transit time information we can extract the motion information from the changes in illumination
levels of the optical image.

The algorithm shown in Figure 3.2 extracts intensity changes by comparing the photoreceptor
outputs to their long term running averages. These temporal changes in illumination levels are
amplified and then half-wave-rectified, because we are only interested in one type of intensity change.
After that we determine the first activated photoreceptor by detecting the first intensity change
bigger than the predetermined threshold value. For this purpose we exploit the winner-take-all idea
to find the bigger response and inhibit the smaller one (Section 2.7). Once we are able to find the
first activated photoreceptor we use this information to set the winner state to this receptor and to
inhibit the neighboring rectifier output. If there is motion information in this intensity change, then
the neighboring receptor will respond in the same way with a reasonable phase lag. As a result, the
loser will be the second receptor whose response exceeds the threshold after the first one does. In
order to make sure that the direction computation output of this intensity change stays the same in
the interval where at least one of two photoreceptor outputs is above threshold, we award the sum of
the rectified signals to the winner. In this way, intensity changes in two neighboring photoreceptors
will result in one direction output. In order to make sure that the winner and loser states are
computed again after the photoreceptors adapt to intensity changes or the two rectified signals go
below the predetermined threshold value, the algorithm sets both rectified signals the loser.

The functioning of the algorithm in signal level is illustrated in Figure 3.3. In this figure, two
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Figure 3.2: Hysteretic winner-take-all based elementary motion detector. Vprout is the output of the
photoreceptor and Vfb is its feedback voltage, which represents the adapted background light level
of the environment observed by the photoreceptor.
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Figure 3.3: Functioning of the hysteretic winner-take-all based motion detection algorithm in signal
level.
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cases in which either photoreceptor A or B is excited before the other one are illustrated. In the case
when A comes first, the sum of A and B is acquired by A and the total result becomes the signal
C. The difference between signals C and D is used to inhibit the loser and excite the winner. Thus,
one of the signals is always suppressed by the system and this helps us obtain a direction selectivity
to image motion.

3.1.2 Transistor-level implementation of the algorithm

The algorithm is implemented in two different versions to show the diversity of implementations that
can be obtained by employing the hysteretic winner idea. All these implementations contain four
different circuit blocks, namely, a photoreceptor, a transconductance amplifier, a half wave rectifier
and a hysteretic winner-take-all circuit.

The transistor-level implementation of the first version of the algorithm is shown in Figure 3.4.
This circuit computes the direction of motion and can be used to find direction vectors in the
optical flow field. The amplitude of the final output of the circuit depends on the contrast level
of stimuli. In circuit simulations, the adaptive photoreceptor by Delbruck [14] is used, whereas, in
the final implementation of the algorithm (Figure A.3), the photoreceptor by Liu [68] is employed.
The adaptation time constant of this photoreceptor circuit can be controlled by an external bias
(see Section 2.2). Such control is needed since the adaptation rate determines the amplitude and
time response of the circuit. For short timescales, if we ignore the DC offsets of the adaptive
photoreceptor outputs then it can be written that Vprout = C1+C2

C1
Vfb (Equation 2.9) and V ′

fb =
VT

κ ln( Iin

I0
) (Equation 2.12).

In addition to the adaptive photoreceptors, transconductance amplifiers are used in the imple-
mentation to remove the offset in photoreceptor voltage output and amplify the difference between
the adaptive photoreceptor output and its feedback voltage. The feedback voltage adapts to the
background illumination level and therefore the difference between these voltage levels indicates an
intensity change in the relative contrast level of the input signal. The transconductance amplifier has
a linear region to represent the current levels in case of small voltage differences and for reasonably
large differences its response saturates. Accordingly, the current output of the transconductance
amplifier to changes in a photoreceptor can be shown to be as follows:

Itrout = Ibiastanh(
κ

2VT
(Vfb − Vprout)) (3.1)

For short timescales,

Itrout = Ibiastanh(
C2

2C1
ln(

Iin

I0
)) (3.2)

where Ibias is the drain-to-source current that is set by Vdiffbias and Iin is the current driven by the
photodiode. For long timescales since Vprout = Vfb,

Itrout = 0 (3.3)

After this stage, a half wave rectifier is employed to extract only one type of change in intensity
level relative to the background light intensity level. This situation is depicted for the rectified
signals in Figure 3.5. Although half-wave-rectification seems like wasting half of the input signal
information, in normal conditions if the adaptation time of the photoreceptors is adjusted prop-
erly one can always obtain a photoreceptor response that varies around the background intensity
level for all kinds of stimuli. Assuming Iout is the current output of the transconductance amplifier,
the response of the half wave rectifier in terms of photoreceptor voltages can be formulated as follows:

Ihwr =
{ |Ibiastanh( C2

2C1
ln( Iin

I0
))| if Itrout < 0

0 if Itrout > 0

The next stage of the circuitry is the implementation of the hysteretic winner-take-all circuit.
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Figure 3.4: The first version of the transistor-level implementation of the hysteretic winner-take-all
based motion algorithm.
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In its operation, a two-input hysteretic winner-take-all circuit compares two inputs, sets the winner
state to the bigger input and then awards a predetermined bias to the winner [18] (see Section 2.7
for details). This circuit is changed (Figure 3.4) to meet the expectations specified in the algorithm.
Firstly, a fixed third input, Vwtareset is added to the circuit as a reset and threshold bias in order
to compare it with two other input signals and determine which of two transduced signals Vd1 and
Vd2 is the first coming signal. Secondly, the fixed bias is altered to two times of the summation
of the half-wave rectified signals, and in this way the status of the winner will be reserved till
both inputs go below the threshold level. As a result of this operation, we will obtain a loser and
a winner, and the information of winner and loser states as is depicted in Figure 3.6. By using
Equation 2.67 and 2.68, the output of this circuit and its conditions can be found. For instance,
when (Vdd − Vwtareset) > (Vdd − Vd1), (Vdd − Vd2), then

Vwta1 = Vwta2 = 0 (3.4)

When (Vdd − Vd1) > (Vdd − Vwtareset) before (Vdd − Vd2) > (Vdd − Vwtareset),

Vwta1 =
VT

κ
ln(

Ihwr1

I0
) +

VT

κ
ln(

2Ihwr1

I0
) = 2VT ln(

√
2Ihwr1

I0
), Vwta2 = 0 (3.5)

After sometime (Vdd − Vd1) > (Vdd − Vwtareset), then

Vwta1 = VT ln(
Ihwr1

I0
) + VT ln(

2(Ihwr1 + Ihwr2)
I0

) = VT ln(
2Ihwr1(Ihwr1 + Ihwr2)

I2
0

), Vwta2 ≈ 0(3.6)

Later when (Vdd − Vd1) < (Vdd − Vwtareset) and (Vdd − Vd2) > (Vdd − Vwtareset),

Vwta1 = VT ln(
Ihwr2

I0
), Vwta2 ≈ 0 (3.7)

Lastly, when (Vdd − Vwtareset) > (Vdd − Vd1) and (Vdd − Vd2), the circuit resets itself and goes back
to its initial condition where

Vwta1 = Vwta2 ≈ 0 (3.8)

In the other case when the first signal that goes below Vwtareset is Vd2, then the result can be
found by interchanging Vwta1 and Vwta2.

In the final stage, the winner and loser voltages are used to sample the rectified currents of the
intensity changes in the both photoreceptor outputs. As seen in Figure 3.4, the output voltage
of the first candidate of the winner state Vwta1 is used to sample the second rectified signal Vd2

and the second candidate, Vwta2, is used to sample the first rectified signal Vd1. In other words,
the early excitation in one of two neighboring photoreceptors causes an inhibition to its rectified
signal and excitation to the rectified signal of the neighboring photoreceptor. The reason for this
kind of sampling is that we are trying to ensure that the sampled signal is the output of a moving
stimulus in the visual field of the photoreceptors with a certain time delay of transition between
each receptor. In this way, it is guaranteed that a sudden change in a photoreceptor output does
not produce a motion output in its interaction with a neighboring photoreceptor if it does not have
a motion component in that direction. In addition, if the competition between two neighboring
photoreceptors for the winning state cannot be concluded, which means that the velocity of the
stimulus is too fast or the orientation of the stimulus does not have any motion component in that
arrangement of photoreceptors (but excites both photoreceptors), then both inputs are set to the
winning state and the output of the circuit becomes zero. As a result, we can conclude that the
magnitude of the current output of the overall circuit illustrated in Figure 3.7 can be formulated as
follows:

|Iout| = |Ibiastanh(
C2

2C1
ln(

Iin

I0
))| (3.9)
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Different circuit implementations of this algorithm can be used to exploit the hysteretic winner
idea. For example, in the second version of circuit implementation (Figure 3.8), two more transcon-
ductance amplifiers are used for each pixel in order to sample the winning output at the right time.
If this circuit is analyzed it can be seen that the duration of current output, which is the same as
the interpixel transit time, is proportional to the inverse of the velocity. For instance, when the first
signal is the winner and the second one is the loser (Figure 3.9), one can observe that Vout1 À Vout2

in the specified time interval, because the first input is amplified and the second one is inhibited. The
transconductance amplifiers will provide (for reasonable contrast levels) a time window by which we
can compute the interpixel transit time of an edge passing over the photoreceptors. This information
can be utilized to obtain the velocity of the stimulus if one computes the reciprocal of the duration
of the output. Considering the functioning of the circuitry, the current output can be formulated.

Firstly, since Ihwr1 = |Ibiastanh( C2
2C1

ln( Iin1
I0

))| and is supplied to the second transconductance
amplifier amplifier as a bias, the result of this operation will be a multiplication that can be shown
as follows:

Imulout = |Ibiastanh(
C2

2C1
ln(

Iin1

I0
))| × tanh(

κ

2VT
(Vfb2 − Vprout2)) (3.10)

Imulout = |Ibiastanh(
C2

2C1
ln(

Iin1

I0
))| × tanh(

C2

2C1
ln(

Iin2

I0
)) (3.11)

Since the half-wave rectified output is zero when Vfb1 < Vprout1 or Vfb2 < Vprout2, Imulout also
becomes zero. In other cases Imulout can be shown to be as follows:

Imulout = |Ibiastanh(
C2

2C1
ln(

Iin

I0
))| × |tanh(

C2

2C1
ln(

Iin2

I0
))| (3.12)

Secondly, the current response of the overall circuit can be found by integrating the effect of the
last transconductance amplifier with the above equation. Hence, the final output is

Iout = |Ibiastanh(
C2

2C1
ln(

Iin

I0
))| × |tanh(

C2

2C1
ln(

Iin2

I0
))| × tanh(

κ

2VT
(Vwta1 − Vwta2)) (3.13)

where the last expression that includes hysteretic winner-take-all outputs can be written in terms of
input currents for the conditions indicated in Equations 3.4, 3.5, 3.6, and 3.7.

In this sense, the hysteretic winner-take-all based algorithm can be utilized not only to obtain
a direction sensor but also a velocity sensor. Besides, the circuit shown in Figure 3.8 is useful
to decrease any error that might be caused by sudden intensity fluctuations in the focal plane of
the sensor. The rectified output of the first transconductance amplifier is used as an input to
the second transconductance amplifier, which detects the changes in the signal level of the second
photoreceptor. This operation corresponds to a multiplication of the two half-wave rectified signals
as shown in Equation 3.12. Hence, this will make sure that we will obtain a motion output when
there are activities in both photoreceptors and also when there is enough time difference in the
transition of the stimulus so that the winning signal can be determined. As is the nature of the
winner-take-all circuit, if the ratio of the input signals cannot exceed the predetermined ratio of
inputs (I1/I2) in the race for the winner state, then both inputs will be assigned as winner, so zero
motion output will be extracted in this case.

In conclusion, this algorithm can be realized as a direction sensor by the first version of the
circuit implementation (Figure 3.4) with 1 photodiode, 31 transistors and 2 capacitors to detect the
direction of motion. The simulation result of this implementation (Figure 3.7) shows clearly the
direction selectivity of the sensor. The second version of the circuit implementation of the algorithm
(Figure 3.8) includes 1 photodiode, 36 transistors and 2 capacitors to compute the interpixel transit
time, which is in turn the indication of velocity. Further simulation results of this implementation
(Figure 3.10) demonstrate that when the frequency of the input signal is decreased from 50Hz to
10Hz, the interpixel transit time increases 5 times. The layouts of the final chip and two different
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Figure 3.5: Response of two half wave rectifiers, which are used to rectify the responses of transcon-
ductance amplifiers to the sinusoidal 50Hz gratings with 90-degree phase difference.

Figure 3.6: Responses of the hysteretic winner-take-all circuit. Once the first incoming signal is
determined, the winner is amplified and loser is inhibited.

versions of the implementations of the pixels are shown in Figures A.1, A.2, and A.3. Unfortunately,
the characterization results of this chip are not yet available.
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Figure 3.7: The output of the first version of the circuit is obtained by sampling the loser of the
competition by the winner output.
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Figure 3.8: The second version of the circuit implementation of the hysteretic winner-take-all based
motion algorithm.
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Figure 3.9: The final output and the computation performed by the second version of the circuit for
10Hz sinusoidal grating input.
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Figure 3.10: The final output of the second version of the circuit. It is simulated with 50Hz and
then 10Hz sinusoidal grating input. The interpixel transit time increases 5 times as the temporal
frequency goes from 50Hz to 10Hz.
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Figure 3.11: The nonlinear differentiator based direction sensor. Vprout is the output of the photore-
ceptor and Vfb represents the adaptation state of the photoreceptor.

3.2 Nonlinear differentiator based direction sensor

In this study, we use temporal changes in the amplified difference of two neighboring photoreceptor
outputs to find their crossing point instead of their edges to determine the direction of image motion.
Intensity changes in two neighboring photoreceptors can be different from each other, but we assume
that if the illumination changes in these receptors contain motion information then these receptor
outputs must cross or have the same value at some point.

Temporal differentiation of the amplified difference of input signals gives its strongest response
when these signals cross. In other words, we focus on the changes in the states of neighboring
photoreceptor outputs. In this study we use the term ‘state’ to describe the level of a photoreceptor
output relative to its neighboring photoreceptor output. Hence, if the photoreceptor output is bigger
than its neighboring photoreceptor output, then the state is defined as ‘ON’ and if it is less than
the neighboring photoreceptor output then the state is defined as ‘OFF’.

By using the transitions from ON-to-OFF and OFF-to-ON we can obtain spike/pulse like re-
sponses from temporal differentiation. These responses can be utilized in motion computation by
multiplying them with a time-window generated by the difference between a photoreceptor output
and its adaptation state.

3.2.1 Algorithm of the sensor

In this section we explain the algorithm of the direction sensor shown in Figure 3.11. As is illustrated
in the algorithm, the temporal differentiation of the amplified spatial difference of two neighboring
photoreceptors can be utilized to detect the direction of the motion. The idea of this algorithm is
developed by making use of the computational properties of visual motion perception.

Within a specified time window, the difference between neighboring photoreceptor outputs can
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be differentiated to acquire information on their relative changes. In the existence of motion, such as
with a sinusoidal grating input, these receptors yield outputs with a phase difference relative to each
other and this phase difference can be used to determine the leading and lagging signals within the
time interval of positive or negative illumination change in one of the neighboring photoreceptors.
In other words, the slope of the difference of these signals will change its sign once in the interval
of one cycle of a sinusoidal grating. Therefore, in the mean, the multiplication of the slope and
intensity change gives the direction of motion. In this section we prove this for a sinusoidal grating
input.

Assume that two neighboring photoreceptors are excited with one-dimensional sinusoidal grating
inputs and wt is the temporal frequency and wx is the spatial frequency of this grating. If the mean
luminance of the signal is I, then we can write the output of these photoreceptors as follows:

I1 = I + ∆Isin(wt · t + wx · x) (3.14)

I2 = I + ∆Isin(wt · t + wx · x± wx ·∆x) (3.15)

where ∆x corresponds to the distance between neighboring photoreceptors, and plus and minus
indicate the direction of motion. The aim is to compute the difference of these two signals and
differentiate the difference of these signals.

I1 − I2 = ∆I · [sin(wt · t + wx · x)− sin(wt · t + wx · x± wx ·∆x)] (3.16)

δ(I1 − I2)
δt

= ∆I · wt[cos(wt · t + wx · x)− cos(wt · t + wx · x± wx ·∆x)] (3.17)

By using the trigonometric identity sin(a)− sin(b) = 2 cos(a+b
2 ) sin(a−b

2 ),

δ(I1 − I2)
δt

= −2∆I · wt · (sin(wt · t + wx · x± wx ·∆x

2
)sin(∓wx ·∆x

2
)) (3.18)

In the time domain, the first sine term is the only effective term that determines the change of
the sign. Hence, we can have only two formulas for the derivative of difference.

For the preferred direction:

δ(I1 − I2)
δt

= 2∆I · wt · [sin(wt · t + wx · x− wx ·∆x

2
)sin(

wx ·∆x

2
)] (3.19)

For the opposite direction:

δ(I1 − I2)
δt

= −2∆I · wt · [sin(wt · t + wx · x +
wx ·∆x

2
)sin(

wx ·∆x

2
)] (3.20)

As seen from the formulas, the direction computation can be reduced to composing the time
window by which the sign of the first sine term can be changed in the interval 0◦ < Θ < 180◦ or
180◦ < Θ < 360◦ (where Θ represents the angle of the sine term) according to the direction of
motion. After removing its offset the first input signal can be used as a time window. Then the
expression shown below can be obtained by multiplying the time window by the derivative. The
output of this computation is depicted in Figure 3.12 for preferred direction, no motion and null
direction cases.

∆I · sin(wt · t + wx · x) · δ(I1 − I2)
δt

=
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Figure 3.12: The result of Equation 3.24 when a normalized sinusoidal grating with 45-degree phase
difference is used to simulate preferred direction, no-motion and null direction cases respectively.

= −2∆I2 · wt · [sin(wt · t + wx · x) · sin(wt · t + wx · x± wx ·∆x

2
) · sin(∓wx ·∆x

2
)] (3.21)

= ∆I2 · wt · sin(∓wx ·∆x

2
) · [cos(2 · (wt · t + wx · x)± wx ·∆x

2
)− cos(∓wx ·∆x

2
)] (3.22)

By using the trigonometric identity cos(2θ) = 1− 2 sin2(θ),

Iout = ∆I2 · wt · sin(∓wx ·∆x

2
) · (1− cos(

wx ·∆x

2
)) (3.23)

= −2∆I2 · wt · sin(∓wx ·∆x

2
)sin2(wt · t + wx · x± wx ·∆x

4
)

Iout = 2∆I2 · wt · sin(∓wx ·∆x

2
) · sin2(

wx ·∆x

4
)

= −2∆I2 · wt · sin(∓wx ·∆x

2
)sin2(wt · t + wx · x± wx ·∆x

4
)

For wx·∆x
4 ¿ (wt · t + wx · x), an approximation can be made to simplify the above equation. In

this case, sin2(wt · t + wx · x± wx·∆x
4 ) compared to sin2(wx·∆x

4 ) plays the main role in determining
the amplitude of the output. Therefore, the final expression can be approximated as follows:

Iout ≈ 2∆I2 · wt · sin(±wx ·∆x

2
)sin2(wt · t + wx · x± wx ·∆x

4
) (3.24)

In this equation, the first sine term determines the direction of motion and its sign depends on
the direction of the fist activated signal. As a result, it can be concluded that one can easily obtain
the direction of motion by just observing the sign of the differentiation in the time interval when
the signal cycles between 0◦ < Θ < 180◦ and/or 180◦ < Θ < 360◦. The motion output shown in
Figure 3.12 confirms the obtained results.
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In contrast to the gradient-based analog VLSI motion sensor developed by Deutschmann [16],
this sensor uses the interaction of two pixels only. Besides, this sensor does not use a spatial
derivative to calculate the direction of motion. Furthermore, the direction selectivity of the sensor
can be improved more if at the last stage, a low-pass filter is employed. The low-pass filter not only
decreases the level of noise, but also provides integration that is needed to compensate for the small
phase difference between the time window and the differentiated signal.

3.2.2 Transistor-level implementation of the algorithm

This algorithm can be implemented in different ways. Depending on how the time window is obtained
and how multiplication or sampling is achieved, different circuit blocks can be employed. However,
in all implementations, photoreceptors (by Delbruck [14] for circuit simulations and by Liu [68] for
the final implementation) and nonlinear differentiators are employed.

The first version of the circuit implementation (Figure 3.13) incorporates the adaptive character-
istics of the photoreceptor to obtain a temporal window. The difference of neighboring photoreceptor
outputs are amplified by a differential amplifier to be differentiated by a nonlinear differentiator.
Using formulas 2.25 and 2.26, the output of the differential amplifier can be found.

When Vprout1 is bigger than Vprout2, then the ON state is obtained and if it is less than Vprout2

then the state becomes OFF. Therefore, the differential amplifier determines the timing of the non-
linear differentiator output when transitions from ON-to-OFF or OFF-to-ON occur. The nonlinear
differentiator responds to these transitions with decaying pulses.

As explained in Section 2.6, for t À CVT

κI0
e
−κVC (t=0)

VT (where C is the capacitance in the circuit,
and VC(t = 0) is the initial voltage of the capacitor at t=0), this circuit becomes independent of the
initial capacitor voltage VC(t = 0), and the output current becomes:

Inldout(t) =
CVT

κt
e

Vgain
VT (3.25)

The amplitude of the currents obtained from Vdiff1 and Vdiff2 are amplified by Vgain1 and Vgain2,
respectively. After that a four quadrant multiplier (realized by two transconductance amplifiers) is
employed to multiply the differentiation of the amplified difference of two neighboring photoreceptor
outputs with the time window obtained from the first photoreceptor. This multiplier is different
from the one described in Section 2.8 and uses two transconductance amplifiers to multiply the
difference between voltage inputs Vprout1 and Vprout2 with the bias currents Idiff1 and Idiff2. In
this case the overall current output will be as follows:

Iout(t) = (Idiff1(t)− Idiff2(t))tanh(
κ

2VT
(Vprout(t)− Vfb(t))) (3.26)

This implementation uses 23 transistors and 3 capacitors per pixel. Deutschmann [16] imple-
mented a similar circuit by utilizing three-pixel interaction, and in this study it is proved that
direction information can be extracted by using only two photoreceptor interactions and without
using a spatial differentiation. The simulation results prove that the circuit implementation of the
algorithm computes the direction of motion unambiguously (Figure 3.14).

The first version of the circuit is the direct implementation of the algorithm but this circuit can
further be simplified by taking only one of the responses of the nonlinear differentiator circuit and
using it as an input to the transconductance amplifier (Figure 3.15). In this way, the transistor
count can be reduced to 18. The simulation results (Figure 3.16) show that this kind of realization
is also enough to obtain the direction of motion. The final output of this circuit can be formulated
in terms of differentiator output and photoreceptor voltages as follows:

Iout(t) = Idiff2tanh(
κ

2VT
(Vprout − Vfb)) (3.27)

The responses of two implementations are different from the simulation results shown in Figure
3.12, because in the implementations we amplified the difference of two neighboring photoreceptor
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outputs instead of using them directly. In addition, we employed nonlinear differentiator and this
caused spike-like responses (Figure 3.14b and 3.16). The layouts of these designs are shown in
Figures A.4, A.5, A.6 and A.7. Again, the characterization results of this chip are not yet available.
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Figure 3.13: The circuit implementation of the nonlinear differentiator based motion algorithm.



41

(a)

(b)

Figure 3.14: The response of the first version of the nonlinear differentiator based algorithm. (a)
The response of two photoreceptors to a 10Hz sinusoidal grating with 30 degree phase difference.
(b) The motion output of the circuit (the direction is changed around 1.37s).
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Figure 3.16: The response of the second version of the circuit implementation of the nonlinear
differentiator based motion sensor to a 10Hz sinusoidal grating.
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Chapter 4

Multi-chip implementations of
Analog VLSI Motion Sensors

Multi-chip sensors are realized by employing a modular system design approach to increase the
flexibility and the computational capabilities of neuromorphic modules. In this kind of implementa-
tion, the communication between the modules is achieved by employing an interchip communication
protocol. In this study, we utilize an asynchronous interchip communication protocol in designing
and implementing different neuromorphic visual models. Each multi-chip system includes one pho-
tosensitive sender chip and one motion computing receiver chip to achieve 1-D motion computation.
Due to its modular nature, this system can be easily used to compute the 2-D optical flow field
by employing one more receiver chip. In addition, the sender chip is designed so that it can be
compatible with any intensity based algorithm. The sender transfers only intensity changes instead
of the sensed illumination level and is therefore efficient in terms of power consumption.

In this work, we present chip level implementations of three different intensity-based visual motion
algorithms, namely, the Adelson-Bergen spatiotemporal energy model [2], the Hassenstein-Reichardt
correlation model [31] and the Barlow-Levick motion detection model [6]. These chips have been
fabricated in a standard 1.5µm CMOS process and 2.1 × 2.1mm2 die size. They have been tested
and characterized for different spatiotemporal frequencies and contrast levels. Also, we present the
characterization results of these sensors. All the analog motion computations are performed with
MOSFETs operating in the subthreshold region to minimize the power consumption of the sensors.

All the sender and receiver chips are composed of P and N pixels that are responsible for positive
and negative intensity changes. The high level architecture of these pixels are illustrated in Figure
4.1. This layout is same for all sender and receiver chips.

4.1 AER protocol

The Address-Event-Representation (AER) is a very efficient way of solving problems faced in the
interchip communication between neuromorphic modules. In this protocol, events are represented
with digital pulses and are utilized to transfer temporal changes in the illumination level of the optical
image by encoding their analog information. The implementation of this method uses a handshaking
protocol and employs two digital control lines and several digital address lines to interface the sender
and receiver chips (Figure 4.2a). The functioning of this communication protocol is illustrated in
Figure 4.2b. In this protocol, if a request with a valid address is made by the sender then the
address lines encode the spatial position of the selected pixel and transfer a binary event to the
corresponding pixel in the receiver chip. The acknowledgement signal sent by the receiver leads to
falling request and falling acknowledge and the system returns back to its initial condition. In order
to assign the interchip communication bus to a particular requesting pixel, an arbitration scheme is
utilized in the sender chip. In this way, it is possible to serialize simultaneous events onto a single
communication bus. For this purpose we employed a binary tree arbiter that is advantageous since it
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Figure 4.1: The organization of P and N pixels in the sender and receiver chips. Each pixel is
composed of P and N pixels that correspond to the negative and positive part of the rectified signal.

can be integrated well with large-array implementations. The details of the hardware implementation
of the AER system that we incorporated into our sensors are explained in [45].

4.2 Photosensitive sender chip

In this work, we implemented only one type of sender chip that can transfer all the intensity changes
in its 2D array of pixels to the corresponding computational pixels in the receiver chip. In this way,
the sender chip becomes compatible with different types of receiver chips that can compute motion
by making use of changes in the intensity information. The sender pixel shown in Figure 4.4 consists
of four circuit building blocks that are described below.

Firstly, we employed an adaptive photoreceptor by Liu [68]. This circuit is shown in Figure 2.2
and described in Section 2.2a. This circuit is used in the sender chip because it adapts to the local
light intensity on slow time scales providing high gain for transient signals that are centered on the
adaptation point. Moreover, in order to limit the power consumption and increase the efficiency in
the operation of sender chip, we used the internal feedback voltage Vfb that represents the adaptation
state of the photoreceptor. By using this voltage we successfully removed the offset from the intensity
level. The photoreceptor output and its feedback voltage can be related for short and long time
scales as explained in Section 2.2.

In the next stage, the response of the photoreceptor is compared with its feedback voltage and
converted to a current output by making use of a transconductance amplifier shown in Figure 2.3a. In
this way, we obtain a bandpass characteristic from the photoreceptor and transconductance amplifier
pair. This characteristic ensures that very high frequencies are attenuated and any offset, or in this
case the background level, is removed. The current output of the transconductance amplifier can be
represented in terms of the photoreceptor voltages as follows:

Iout = Ibiastanh(
κ

2VT
(Vprout − Vfb)) (4.1)

where Ibias is the drain-to-source current that is set by Vdiffbias and Iin is the current driven by the
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Figure 4.2: AER protocol summary. (a) The model for AER transmission: a sender chip communi-
cates with a receiver chip via request, acknowledge and address lines. (b) The handshaking protocol
for transmission using the control and address lines: a request with a valid address leads to an
acknowledgment, which in turn leads to falling request and falling acknowledge.

photodiode. For short timescales, the above equation can be written as

Iout = Ibiastanh(
C2

2C1
ln(

Iin

I0
)) (4.2)

For long timescales since Vprout = Vfb,

Iout = 0 (4.3)

After that, the output current of the transconductance amplifier is rectified by utilizing a full-
wave rectifier (Figure 2.4a) in order to acquire separate current representations for negative and
positive intensity changes. These currents are compared with predetermined threshold values to set
a threshold level over and below the adaptation state of the photoreceptor. In this case, the current
outputs of the analog part of the pixel circuitry can be formulated as follows:

Ioutpos =
{

Ibias tanh( C2
2C1

ln( Iin

I0
))− Ileakpos when Vprout > Vfb

0 when Vprout < Vfb

Ioutneg =
{ |Ibias tanh( C2

2C1
ln( Iin

I0
))| − Ileakneg when Vprout < Vfb

0 when Vprout > Vfb

where Ileakpos and Ileakneg are the predetermined leakage currents. The currents Ioutpos and Ioutneg

are sent by the AER communication interface circuit (shown in Figure 4.3) to the corresponding
pixels in the receiver chip only if they are bigger than zero. This circuit is a spiking circuit that
generates spikes with a frequency proportional to the amplitude level of the current input. The
details of the AER interface circuit are explained in [35].

The activation of the AER circuit is limited by the Vleak voltage. In order to request service,
the illumination change has to exceed the leakage current created by Vleak. This limitation helps
the AER circuit set a minimum signal level that can be transmitted to the receiver chip. When the
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Figure 4.3: AER interface circuit located in the sender chip.

current level of contrast exceeds the threshold set by Vleak, it is integrated on the node Vmem. When
Vmem overcomes the threshold determined by Vthr, then Rpix is activated. In this way a request is
made. Service is awarded to this request when the row arbiter lowers Apix (makes it active), and
then Vmem goes to Vdd. In this process the wired-OR Dpix signal, which is shared by all the pixels
in that column, is pulled up and remains high till Apix returns to its inactive state. Arbitration,
address encoding, and other interface circuitry is located in the periphery of the sender chip and
discussed in [45].

The overall circuitry of the sender pixel shown in Figure 4.4 contains one photodiode, 49 transis-
tors, 3 floating capacitors and 3 MOSCAPs. The number of capacitors can be decreased by applying
a different strategy in sending the positive and negative currents off the chip. If the timing of transi-
tion from negative-to-positive or positive-to-negative current can be determined then only one AER
interface circuit can be used to create spikes. In this type of computation, these transitions are
determined to encode the position of pixel for the negative and positive part of the current. In order
to represent the signal and its position correctly, a pseudo row is created for all pixels. By using this
strategy a circuit shown in Figure 4.5 can be realized by using 48 transistors, 2 floating capacitors
and 2 MOSCAPs. Hence the space used to implement each pixel can be reduced and fill factor in
the front-end chip can be increased. Lastly, the layouts of the sender pixel and chip are shown in
Figure A.8 and A.9, respectively.

4.3 Motion computing receiver chips

In this work, we utilized motion computing receiver chips to perform small field motion computa-
tion. These receiver chips employ different intensity-based models but use the same high level chip
architecture. Every receiver chip is composed of scanners, AER circuitry and an array of motion
computation pixels. Moreover, each receiver pixel contains integrator circuits to integrate the spikes
received from the sender chip. The AER interface circuit in the receiver chip is illustrated in Figure
4.6 and peripheral address decoding and interface circuitries to support the protocol are discussed
in [45].

An activation in the sender chip causes the AER bus to create a request to the receiver chip.
This request signal with its particular address creates an excitation in the corresponding pixel in the



48

V
thr

A
C

K

V
m

em
D

pix

V
pos

V
fw

rbias

V
neg

V
neg

V
leakneg

V
leakpos

V
pos

V
fb

V
prout

V
diffbias

V
prout

V
b

V
fb

V
b

V
prout

V
adaptD

pix

R
pixA

C
K

A
C

K
A

C
K

A
C

K

R
pix

V
thr

A
C

K

V
m

em

V
prbias

F
ullw

ave rectifier
T

ransconductance A
m

plifier

and subtractors

C
urrent m

irrors

A
E

R
 interface circuit

A
E

R
 interface circuit

A
daptive P

hotoreceptor

Figure 4.4: Sender chip pixel circuitry.



49

V
diffbias

V
prout

V
prout

V
b

V
fb

V
b

V
prout

V
adaptD

pix

R
pixA

C
K

A
C

K

V
thr

A
C

K

V
m

em

V
openpos

V
openneg

R
pix

R
pixpos

R
pixneg

R
pix V

openneg

V
openpos

V
pos

V
neg

V
leak

V
neg

V
fw

rbias

V
pos

V
fb

V
prbias

N
A

N
D

 logic circuits

A
E

R
 interface circuit

C
urrent com

parator

and subtractor

C
urrent m

irrors

F
ullw

ave rectifier
T

ransconductance A
m

plifier
A

daptive P
hotoreceptor

Figure 4.5: The second version of the sender chip pixel circuitry.
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receiver. Signals are transmitted to the receiver pixels by holding their Xsel and Ysel signals high
(Figure 4.6). This causes PIXACK to go high which indicates that signal is transmitted. In this
way, the AER interface circuit communicates with the peripheral AER system by pulling PIXACK
up for each spike sent.

Whenever Xsel and Ysel are selected, a charging current through transistor M7 is created. The
amplitude of this current is determined by the bias Vqua and created charges are integrated on the
capacitor. In this implementation, the integrating circuit is utilized as a temporal filter. In order to
justify that such realization is possible, the output current of the circuit is formulated in terms of
Vqua, Voff and the frequency of spikes coming in.

Firstly, assuming that the current through M7 is IM7 , the current through the capacitor is Ic and
the input current is Iin (which is created by the transistor M6 whenever Xsel and Ysel are selected),
then the relation between these currents can be shown as follows:

Iin = IM7 + Ic (4.4)

In the calculations, we presume that Iin is constant and exist whenever AER interface circuit is
activated. The capacitor current can be written as Ic = C δVc

δt . Since the current IM7 is amplified
by the voltage gain Voff , the output current can be formulated in terms of IM7 and Voff as Iout =

IM7e
Voff
VT . In order to represent Iout in terms of Iin, we use the chain rule to relate the time derivative

of Iout to the time derivative of Vc.

δIout

δt
=

δIout

δVc

δVc

δt
(4.5)

Since Iout = Ioe
κVc
VT ,

δIout

δVc
=

κIout

VT
(4.6)

and since δVc

δt = Ic

C and Ic = Iin − IM7, by writing IM7 in terms of Iout we can obtain the following



51

equation:

δVc

δt
=

1
C

(Iin − Ioute
−Voff

VT ) (4.7)

By combining Equations 4.7 and 4.6, we can show that the relation between Iout and Iin can be
formulated as follows:

δIout

δt
=

κIout

VT

1
C

(Iin − Ioute
−Voff

VT ) =
1
K

Iout(Iin − αIout) (4.8)

where K = CVT

κ and α = e
−Voff

VT . This equation can be solved by integrating it as follows:

∫ Iout(t)

Iout(0)

δIout

Iout(Iin − αIout)
=

1
K

∫ t

0

δt (4.9)

1
Iin

∫ Iout(t)

Iout(0)

(
1

Iout
+

α

(Iin − αIout)
)δIout =

t

K
(4.10)

ln(
Iout(t)

Iin − αIout(t)
Iin − αIout(0)

Iout(0)
) =

Iin

K
t (4.11)

From the above equation we can solve and find Iout,

Iout(t) =
Iin

2α

1− Iin−αIout(0)
αIout(0)

e−
Iint

K

1 + Iin−αIout(0)
αIout(0)

e−
Iint

K

+
Iin

2α
(4.12)

The above equation can be simplified further as follows:

Iout(t) =

{
Iin

2α tanh( Iin

2K t− 1
2 ln( Iin−αIout(0)

αIout(0)
)) + Iin

2α if Iin > αIout(0)
Iin

2α coth( Iin

2K t− 1
2 ln( Iin−αIout(0)

αIout(0)
)) + Iin

2α if Iin < αIout(0)

The above equation is valid when Iin is zero or no more spikes received. If AER interface circuit
is not activated then Iin becomes zero. In this case,

δIout

δt
=

1
K

Iout(Iin − αIout) = − α

K
I2
out (4.13)

δIout

I2
out

= − α

K
δt (4.14)

Integrating the above equation,

−
∫ Iout(t)

Iout(0)

δIout

I2
out

=
α

K

∫ t

0

δt (4.15)

Iout(t) =
Iout(0)

αIout(0)
K t + 1

(4.16)

By employing this equation in the calculations, the response of the circuit to a pulse train can
be found. Assuming the period of the pulse train is T and the charge integrated in the capacitor
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Figure 4.7: The current outputs of two integrators biased with different Vqua and Voff biases. A
periodic spike train, Vin is provided to two integrators. Vqua1 is made smaller than Vqua2 (relative
to Vdd) and this yields Iout2 to be the filtered version of Iout1. The difference in the amplitude of
these currents is compensated by biasing Voff2 larger than Voff1.

per pulse is Qcap, then for the time interval t0 + nT ≤ t < t0 + (n + 1)T ,

Iout(t) =
Iout(t0 + nT )

αIout(t0+nT )
K (t− (t0 + nT )) + 1

(4.17)

This equation corresponds to the decay phase of the signal. When it is updated by another pulse,
the output current becomes

Iout(t0 + nT ) =
1

1
IT

+ ( 1
Iout(t0)

− 1
IT

)(1 + β)−n
(4.18)

where β = e
Qcap

K − 1 and IT = β K
αT . The peak response becomes IT , when (1 + β)−n ¿ 1. When

the current Iin is switched off, the output current converges to I = IT

1+β .

This circuit is employed to integrate the positive and negative part of the intensity signal sent
by the sender chip and to obtain a similar configuration as has been achieved with monolithic
implementations. As an example consider the case when the positive part of the signal sent by the
sender is integrated by two integrators that have different Vqua and Voff biases to obtain a delay
between these two integrated signals. Assuming that the first integrator has Vqua1 and Voff1 biases
and the second integrator has Vqua2 and Voff2 biases, when (1 + β)−n ¿ 1, the peak responses of
the integrated signals become

Iout1 = IT1 = (e
κQcap1

CVT − 1)
CVT

κT
e

Voff1
VT (4.19)

Iout2 = IT2 = (e
κQcap2

CVT − 1)
CVT

κT
e

Voff2
VT (4.20)
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Their decaying responses converge to the current levels which can be shown as follows:

Iout1 =
IT1

1 + β
= (1− e

−κQcap1
CVT )

CVT

κT
e

Voff1
VT (4.21)

Iout2 =
IT2

1 + β
= (1− e

−κQcap2
CVT )

CVT

κT
e

Voff2
VT (4.22)

where Qcap is mainly controlled by Vqua. The amplitude levels of the output signals can be changed
by using both Voff and Vqua. Besides, the characteristic of the rising edges of the signals are

determined by the expression (e
κQcap
CVT − 1) and the decaying parts are governed by the expression

(1− e
−κQcap

CVT ). These biases help us obtain a low-pass characteristic from the integrator circuit. In
Figure 4.7, the incoming spikes, Vin, are integrated by two integrators biased with different Vqua

and Voff biases. The current outputs of these integrators are defined as Iout1 and Iout2, and the
difference between their behaviors are illustrated. Iout2 can be used as a low-pass filtered version of
Iout1. When Vqua1 is made smaller than Vqua2 relative to Vdd, Iout2 is delayed more than Iout1. The
difference in the amplitude of these currents is compensated by biasing Voff2 larger than Voff1.

After the integration stage, motion computation algorithms are implemented in the receiver
chips. In this work, we present three intensity based models that utilize the integration stage of the
AER circuitry as a temporal filter.

4.3.1 Hassenstein-Reichardt model

Hassenstein and Reichardt deduced a model for motion detection on the basis of the optomotor
responses obtained from the beetle Chlorophanus [31]. They succeeded in eliciting a measurable
optomotor response by presenting the animal with sequences of light and dark steps that simulated
motion in a given direction. After analyzing the responses to these sequences, it has been concluded
that motion detection by the nervous system requires an interaction of signals from two directly
neighboring or next neighboring ommatidia.

The Hassenstein and Reichardt model is a correlation-type motion detector that operates directly
on filtered versions of the retinal light intensity distribution and assumes a multiplication for the
interaction of its two input channels as illustrated in Figure 4.8. When a detector receives a signal in
the input channel which is activated first by a moving stimulus, it is delayed by an appropriate time
interval ∆t, and then the signals in both input channels tend to coincide at the multiplication stage
resulting in a large response amplitude. Conversely, when the temporal sequence of stimulation is
reversed (corresponding to motion in the null direction), the separation of both signals is further
increased by the detector delay, resulting in only small responses.

The correlation scheme includes the delay and multiplication stages to eliminate the response
components that are not specifically a result of stimulus motion but are induced by correlated input
signals such as background luminance. The outputs of multiplication stages are then subtracted
leading to responses of the same amplitude but of different signs for motion in opposite directions.

While a great deal of experimental evidence supports the Reichardt correlator as a mechanism in
biological motion detection, the correlator does not signal the true image velocity [62]. However, the
predictable statistics of natural images imply a consistent correspondence between mean correlator
response and velocity, enabling the Reichardt correlator to act as a practical velocity estimator. In
addition, analysis and simulations [19] suggest that processes commonly found in visual systems,
such as pre-filtering, response compression, integration and adaptation improve the reliability of
velocity estimation and expand the range of velocities coded by the model.

In a variety of studies the Reichardt correlation model has been implemented on analog VLSI
chips to estimate the optical motion field created by an image motion [4], [30] [66], [67]. Also, Liu
[55] and Harrison [30] used this model to mimic the fly’s motion detection system. In this thesis, we
present an implementation of the Reichardt model by incorporating the modular strategy.
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Figure 4.8: The Reichardt model.

Figure 4.9: Modified version of the Reichardt model.
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4.3.1.1 Modified form:

In order to achieve a correlation-based motion computation and implement the Reichardt model in
analog VLSI hardware by employing the multi-chip strategy, we modified the canonical algorithm
(shown in Figure 4.8). The modified model is shown in Figure 4.9.

In order to realize the algorithm, we have to remove the DC component of the illumination
level. In this implementation, this was achieved by taking the difference between the photoreceptor
output and its adaptation state by employing a transconductance amplifier. The Reichardt model
is a correlation based algorithm, so the maximum response from the model can be retrieved when
the phase difference between the neighboring photoreceptors is close to 90 degrees. In the original
model this is obtained by using delay lines. In the modified model, we employed integrators to be
able to introduce different amounts of delay to the signals. Finally, the nonlinearity stage is realized
by using the multiplication operation as is the case in the original form of the model.

4.3.1.2 Expected response:

In order to predict the characteristics of the Hassenstein-Reichardt model, we use its response to a
sinusoidal grating. Assume that the spatial pattern observed by the photoreceptors is a sinusoid with
maximum amplitude A, contrast C and spatial frequency fs cycles/degree, travelling with velocity
υ, then the luminance pattern can be represented as a function of time and space as follows:

I(x, y, t) = A(1 + C · sin(2πfsx + 2πftt)) (4.23)

where ft = υ · fs. Accordingly, the inputs of the correlators can be defined as follows:

I1(t) = A(1 + C · sin(2πftt + 2πfsx)) (4.24)

I2(t) = A(1 + C · sin(2πftt + 2πfsx± 2πfs∆x)) (4.25)

where ∆x corresponds to the distance between neighboring photoreceptors, and plus and minus
indicate the direction of motion. Assuming that the temporal filter has a frequency response H(ft) =
F (ft) ·eiΘ(ft), where F (ft) and Θ(ft) are real-valued functions indicating amplitude and phase, then
after removing the mean of the signals I1 and I2 we can obtain the delayed signals,

ID1(t) = A · F (ft) · C · sin(2πftt + 2πfsx + Θ(ft)) (4.26)

ID2(t) = A · F (ft) · C · sin(2πftt + 2πfsx± 2πfs∆x + Θ(ft)) (4.27)

By applying the computation performed in the model and simplifying with the trigonometric
identities cos(α) · cos(θ) = 1

2 [cos(α+ θ)+cos(α− θ)] and cos(α+ θ) = cos(α) · cos(θ)− sin(α) · sin(θ),
we can find the detector output as follows:

R(t) = ID1 · I2 − ID2 · I1 (4.28)

=
C2 · F (ft)

2
· (sin(Θ(ft)∓ 2πfs∆x)− sin(Θ(ft)± 2πfs∆x)) (4.29)

= C2 · F (ft) · sin(Θ(ft)) · sin(±2πfs∆x) (4.30)

Further assuming that the temporal filter is a first-order low-pass filter with impulse response
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d(t) = 1
τ e

−t
τ for t > 0, the frequency response of this filter can be found as the following expression:

D(ft) =
1√

1 + (2πftτ)2
e−iarctan(2πftτ) (4.31)

From this equation, we can find F (ft) and Θ(ft),

F (ft) =
1√

1 + (2πftτ)2
(4.32)

Θ(ft) = arctan(2πftτ) (4.33)

sin(Θ(ft)) =
2πftτ√

1 + (2πftτ)2
(4.34)

Finally, we can obtain the motion output by using above equations.

R(t) =
C2

2φτ
· ft

(ft)2 + 1/(2φτ)2
· sin(±2πfs∆x) (4.35)

In 1D motion computation, fx = fssin(θ) where θ is the orientation of the stimulus, and the motion
output becomes

R(t) =
C2

2φτ
· ft

(ft)2 + 1/(2φτ)2
· sin(±2πfxsin(θ)∆x) (4.36)

From the final formula, we observe that the model yields a square-law response to contrast
variations and a sinusoidal response to stimulus orientation. The spatial frequency response of the
model is determined the term sin(2πfxsin(θ)∆x). Accordingly, the peak of the response occurs when
2πfxsin(θ)∆x = π

2 . Finally, the temporal response of the model is determined by the frequency
response of the low-pass filter since the bandwidth of the photoreceptor is assumed to be wider
compared to the temporal filter. Therefore, the temporal frequency peak in the final output can be
altered by changing the tuned temporal frequency of the low-pass filter.

4.3.1.3 Multi-chip implementation of the model:

The multi-chip implementation of the model is realized with sender and receiver chips. The main
aim in utilizing the modular strategy in motion processing is to decrease the computational load of
the front-end chip and increase the computational capacity of the overall system. Therefore, the
computation performed in the front-end chip is minimized by splitting the motion computation into
sender and receiver chips.

The details of the sender chip are explained in Section 4.2. Basically, the function of the sender
chip in this implementation is to sense the illumination changes in the environment and send this
information to the receiver chip.

The receiver part of the multi-chip system is composed of the serial scanners, communication
interface and corresponding pixels of the sender chip. Each pixel in the receiver includes P and N
pixels as shown in Figure 4.11a and these pixels correspond to the positive and negative parts of the
rectified signal in the sender chip. These sub-pixels include an interface to integrate the incoming
spikes. The voltage level of these integrated spikes is used to perform motion computation in the P
and N pixels. The final computation is performed by the interactions between the P and N parts of
two neighboring pixels.

As seen in the P-pixel (Figure 4.11), the same incoming spikes are integrated by two integrator
circuits. These integrators are not identical in terms of the delay they provide; one of them can be



57

Figure 4.10: A multi-chip implementation of the Reichardt model.

used to obtain an extra delay that is needed to perform the correlation. In this way, one can obtain
the delayed signal without using an extra low-pass circuit.

The nonlinearity needed in motion computation is achieved by using four-quadrant current mul-
tiplier circuit [13] (Figure 4.11b). After the subtraction stage, the final output that represents the
extracted motion information can be obtained. The final output of the circuit can be formulated as
follows:

Iout = I1posD · I2pos + I1negD · I2neg − I2posD · I1pos − I2negD · I1neg

−I1posD · I2neg − I1negD · I2pos + I2posD · I1neg + I2negD · I1pos (4.37)

This equation corresponds to a familiar output expression of the correlation scheme realized by
the original Reichardt model.

Iout = I1D · I2 − I2D · I1 (4.38)

The final motion output of the sensor gives an indication whether the motion is in the preferred
or null direction. The circuit implementation of the model is achieved with 65 transistors and 4
capacitors in the P and N pixels of the receiver chip. The layout of the receiver pixel and chip are
shown in Figures A.10 and A.11, respectively. The Reichardt receiver includes 6× 7 pixels.

4.3.2 Adelson-Bergen spatiotemporal energy model

The Adelson-Bergen algorithm is a spatiotemporal algorithm which obtains its direction selectivity
by integrating quadrature filters with a nonlinearity function. This algorithm extracts the Fourier
energy in a band of spatiotemporal frequencies regardless of the phase of the stimulus. It is used to
explain the visual pathways of primate cortical complex cells [61] and it has been shown that this
algorithm corresponds to the elaborated Reichardt correlation model [65].

In order to perceive the motion in continuous or sampled displays, there must be energy in
the signal that has appropriate spatiotemporal orientation. This spatiotemporal orientation can be
detected by using two units that act as linear spatiotemporal filters (the one at the left-hand side of
Figure 4.12 has cosine (even) phase, whereas that at the right-hand side has sine (odd) phase). Then
squaring and summing the two unit outputs, a measure of local motion energy can be acquired.
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(a)

(b)

Figure 4.11: The Reichardt receiver chip pixel circuitry. (a) The structure of the main pixel in the
Reichardt receiver chip. (b) The P pixel circuitry in the Reichardt receiver chip, the circuitry is
same in the N pixel.
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Figure 4.12: The structure of the Adelson-Bergen model in terms of linear filters. Two linear
filters, whose responses are 90 degrees out of phase, form a quadrature pair. If their responses are
squared and summed, the resulting signal gives a phase-independent measure of local motion energy.
Reproduced from [2] without permission.

In this model, the two Gabor functions are sine and cosine functions weighted by the same
Gaussian window and they are utilized to extract the energy within a spatiotemporal-frequency
band. The resulting response will always be positive, and it will grow and fall smoothly in the
region of the moving edge. As a result, the response will be sensitive to the direction of motion but
insensitive to the sign of the stimulus contrast [2].

A software version of the Adelson-Bergen algorithm was implemented on a general-purpose analog
neural computer by Etienne-Cummings [25]. Later, Higgins and Korropati [37] implemented an
analog VLSI sensor based on this algorithm. In this study, we show that the multi-chip idea can be
successfully utilized to realize the Adelson-Bergen algorithm without using explicit temporal filters
in the implementation.

4.3.2.1 Canonical Form:

The canonical form of the Adelson-Bergen algorithm is shown in Figure 4.13. This scheme is used
to perform 1D motion detection by employing quadrature spatial and temporal filters. In addition
to the spatial and temporal filtering, a certain degree of nonlinearity is introduced to the signal to
obtain the direction selectivity and nonseparable motion energy. In the original form of the model,
it is proposed that the spatial filters can be realized by making use of the quadrature Gabor filters.
These filters can be mathematically represented as follows:

fs1(x) = e
−x2

2σ2 cos(wxx) (4.39)

fs2(x) = e
−x2

2σ2 sin(wxx) (4.40)

Moreover, the temporal filters are suggested to be second and third derivatives of the Gaussian
function.

ft1(t) = (kt)3e−kt2 [
1
3!
− (kt)2

(3 + 2)!
] (4.41)

ft2(t) = (kt)5e−kt2 [
1
5!
− (kt)2

(5 + 2)!
] (4.42)
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Figure 4.13: The original form of the Adelson-Bergen model. The same spatial and temporal filters
are used. Sums and differences generate directionally selective filters. Sums of squares of quadrature
pairs give motion energy for each direction. The difference between the rightward and leftward
signals gives the final output. Reproduced from [2] without permission.
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In case of a one-dimensional sinusoidal grating with amplitude I, spatial frequency ws, and
temporal frequency wt, the intensity change can be represented as follows:

I(x, y, t) = I · sin(wtt + wsx) (4.43)

By performing the computations illustrated in Figure 4.13, we can find the final motion energy
output. Firstly, from the spatial filters we obtain the following expressions:

fleft(x, t) = I · |fs1| · sin(wtt + wsx + φs1(ws)) (4.44)

fright(x, t) = I · |fs2| · sin(wtt + wsx + φs2(ws)) (4.45)

where |fs1| and |fs2| are the magnitudes of the spatial filters and φs1(ws) and φs2(ws) are their
phases. After introducing two temporal filters with magnitudes |ht1| and |ht2| and phases φt1 and
φt2, we can obtain the following equations:

A(x, t) = I|fs1||ft1| sin(wtt + wsx + φs1(ws) + φt1(wt)) (4.46)

A′(x, t) = I|fs1||ft2| sin(wtt + wsx + φs1(ws) + φt2(wt)) (4.47)

B(x, t) = I|fs2||ft1| sin(wtt + wsx + φs2(ws) + φt1(wt)) (4.48)

B′(x, t) = I|fs2||ft2| sin(wtt + wsx + φs2(ws) + φt2(wt)) (4.49)

As it is illustrated in the Figure 4.13, the final motion energy output is O = 4(AB′ −A′B), and
using trigonometric identities, we can obtain the final expression as follows:

O = 4I2|fs1||fs2| sin(φs1 − φs2)|ft1||ft2|sin(φt1 − φt2) (4.50)

This algorithm theoretically yields very reliable results in motion computation. However, in
order to realize the algorithm in hardware, the algorithm should be modified adequately.

4.3.2.2 Modified Form:

In this study, the Adelson-Bergen algorithm has been implemented (in a modified form; see Figure
4.14) by making use of neuromorphic principles [58] and simplified without modifying the basic idea
of the spatiotemporal energy model.

Firstly, the spatial filtering in the model is trivialized by simply using photoreceptor outputs
separated by a ∆x spatial distance between adjacent photoreceptors. Secondly, temporal filters in
the model are implemented by employing integrating circuits. In this thesis, we have demonstrated
that integrating receiver circuitry can be used to attain phase differences. This novel technique of
using the integrator as a temporal filter enables us to exploit the advantages of multi-chip strategy in
motion computation and to decrease the computational overload. Finally, the nonlinearity required
to realize the algorithm is attained in the implementation by making use of the mathematical
properties of rectification. In this study we show that absolute value operation can be utilized
instead of multipliers to obtain the nonlinearity needed for motion computation.

4.3.2.3 Expected Response:

When the Adelson-Bergen motion sensor is exposed to a one-dimensional sinusoidal grating with
amplitude A, contrast C, spatial frequency fs, orientation θ relative to the sensor’s preferred orien-
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Figure 4.14: Modified version of the Adelson-Bergen spatiotemporal energy model.

tation, and temporal frequency ft,

I(x, y, t) = A · (1 + C · sin(2πftt + 2πfs · (x cos(θ) + y sin(θ)))) (4.51)

then in case of using a squaring operation (instead of employing the absolute value operation) and
a low-pass filter to obtain a closed-form solution, the mean output of the sensor with neighboring
photoreceptors separated with δ, can be computed as follows:

A2 · P (ft)2 · C2 · sin(2πfsδ cos(θ)) ·H(ft) · sin(φt(ft)) (4.52)

where P(ft) is the magnitude of the photoreceptor temporal frequency response, and H(ft) and
φt(ft) are respectively the magnitude and phase of the low-pass filter’s response.

Firstly, the final expression indicates that the sensor has a square-law response to changes in
contrast. Secondly, there is a sinusoidal relationship with the orientation of the stimulus. The
algorithm gives a large positive response to stimuli in the preferred direction, a large negative
response to null direction, and zero response to orthogonal orientations. Thirdly, in response to the
sinusoidal grating, the spatial frequency response peaks when fs cos θ=0.25 cycles/pixel. Lastly, the
temporal properties of the sensor can be extracted from the computed output by analyzing the terms
that include temporal frequency P (ft)2H(ft) sin(φt(ft)). According to these terms, the temporal
frequency tuning peaks at the cutoff frequency of the low-pass filter and the overall responses exhibits
an envelope which corresponds to the temporal frequency tuning of the photoreceptor.

4.3.2.4 Multi-chip implementation of the model:

The multi-chip implementation of the algorithm is composed of the sender and receiver chip pair
and illustrated in Figure 4.15. The details of the sender is given in Section 4.2. The receiver chip
includes an AER circuitry and 2D array of motion computing pixels.

As shown in the energy model (Figure 4.13), two different temporal filters are introduced to each
signal. This stage of implementation is achieved by employing the integrating circuits in the receiver
chip. This circuit provides not only integration but also the necessary delay for motion computation.

In the first version of the implementation shown in Figure 4.16, the output currents from the
integration stages are subtracted and absolute valued, and the final output is obtained by sum-
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Figure 4.15: The multi-chip implementation of the Adelson-Bergen algorithm. Vprout and Vfb repre-
sent the photoreceptor’s output and feedback response, respectively. In addition, Ip and In refer to
positive and negative parts of the rectified signal, and in the receiver part, Ipos and Ineg represent
the integrated versions of these signals. Lastly, IposD and InegD are the signals that are delayed
relative to Ipos and Ineg.

ming and subtracting the currents from absolute value circuits. The formulation of the performed
computation is shown below.

Iout = |I2negD + I1neg − I2posD − I1pos|+ |I2neg + I1posD − I2pos − I1negD|

−|I2posD + I1neg − I2negD − I1pos| − |I2neg + I1negD − I2pos − I1posD| (4.53)

In the second version of the implementation of the model (Figure 4.17), a normalized squaring
circuit is added to increase the nonlinearity that can be introduced to the signal. This normalized
squaring circuit takes the square of the absolute valued signal. As a result, the final output obtained
from the circuit can be shown as follows:

Iout = |I2negD + I1neg − I2posD − I1pos|2 + |I2neg + I1posD − I2pos − I1negD|2

−|I2posD + I1neg − I2negD − I1pos|2 − |I2neg + I1negD − I2pos − I1posD|2 (4.54)

The first version of the receiver includes 55 transistors and 4 capacitors in each pixel while the
second version of the implementation contains 76 transistors and 4 capacitors. The layouts of the
receiver pixel and chip for the first version are shown in Figures A.12 and A.13, respectively. Also,
the pixel and chip layouts of the second version are shown in Figure A.14 and Figure A.15. These
chips include 6× 6 pixels.

4.3.3 Barlow-Levick model

Barlow and Levick [6] conducted experiments on rabbit retinal ganglion cells by stimulating them
with a sequence of discrete illumination steps in two neighboring locations. They found that the
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Figure 4.16: The first version of the P pixel in the Adelson-Bergen receiver chip. The main pixel is
composed of the P and N pixels. After the integration of the incoming signals in the P and N pixels,
the rest of the motion computation is performed in the P pixel. Therefore, the N pixel includes only
integrators.
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Figure 4.17: The second version of the P-pixel in the Adelson-Bergen receiver chip. As in the first
version of Adelson-Bergen receiver chip, the main pixel is composed of the P and N pixels. Both
P and N pixels integrate the incoming signals but the rest of the motion computation is performed
only in the P pixel.
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response to a null direction sequence was significantly suppressed, whereas the response to a preferred
direction sequence was estimated to be the sum of the individual responses [10]. By using the findings
of the experiments, they explained the direction selectivity in the rabbit retina; it employs inhibitory
connections between the direction selective cells to achieve the desired direction selectivity [5].

Benson and Delbruck [7] utilized this null inhibition phenomena to implement a monolithic analog
VLSI vision sensor. They used temporal intensity changes to achieve the excitation and inhibition.
In this thesis, we present an intensity-based model that achieves the direction selectivity by utilizing
a correlation based computation.

4.3.3.1 Canonical form:

The original Barlow-Levick model is illustrated in Figure 3.1. The direction selectivity is attained
by the excitatory and inhibitory connections between the photoreceptors and direction selective
cells. For instance, when a moving edge passes over the photoreceptors from left to right, the left
photoreceptor is excited first, causing its direction selective (DS) cell to fire. After the edge reaches
the right photoreceptor, it starts to fire and since it has an inhibitory connection to the left DS
cell, the right photoreceptor prevents further output from the left DS cell. In the other case, when
an edge is moving in the opposite or null direction (right to left), the activity evoked in the right
photoreceptor completely inhibits the left DS cell from firing, thus yields a direction selectivity [7].

4.3.3.2 Modified form:

In order to implement this model in analog VLSI hardware, we modified it adequately as illustrated in
Figure 4.18 (R. Deutschmann, unpublished data, 2002). This realization is the same as the modified
version of the Reichardt algorithm shown in Figure 4.9 except the multiplication stage is exchanged
with the absolute value operation. Multiplication is space consuming in terms of the number of
transistors used, whereas the absolute value circuit is well-suited to obtain the nonlinearity needed
for motion computation. Therefore we obtain better area usage in this implementation than in the
Reichardt implementation.

4.3.3.3 Expected response:

The expected response of the modified form of the Barlow-Levick is similar to the response of the
Reichardt algorithm, because the only difference between their modified form is the nonlinearity
operation stage. In contrast to the Reichardt model, Barlow-Levick model employs the absolute
value circuit to obtain the nonlinearity. As a result, the closed form solution of the modified Barlow-
Levick model’s response to a sinusoidal stimulus can be found by using Equation 4.36.

4.3.3.4 Multi-chip implementation of the model:

The multi-chip implementation of the model includes a sender and receiver chip pair. The imple-
mentation is achieved by utilizing the same sender chip (see Section 4.2) that we used to realize
other models. It transfers the small field intensity changes to the receiver chip that contains the
motion computation circuitry.

The receiver part includes an AER circuit to communicate with the sender chip and a 2D array
of pixels to process the intensity information. After the integration of the incoming spikes by the
integrator circuit, the negative and positive parts of the received signals are combined as illustrated
in Figure 4.19. This computation can be formulated as follows:

Iout = |I2negD + I1pos − I2posD − I1neg| − |I2pos + I1negD − I2neg − I1posD| (4.55)

This equation is equivalent to the formula shown below:

Iout = |I1 − I2D| − |I2 − I1D| (4.56)
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Figure 4.18: Modified version of the Barlow and Levick model.

Figure 4.19: Multi-chip implementation of the Barlow and Levick model.
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Figure 4.20: The P pixel in the Barlow-Levick receiver chip. The main pixel is composed of the P
and N pixels. The N pixel includes only an AER interface circuit and integrators, whereas the P
pixel consists of an AER interface circuit, integrators and rest of the motion computation circuitry.
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Figure 4.21: The structure of the main pixel in the Barlow-Levick receiver chip.
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The schematic of the circuit is shown in Figure 4.20, and as shown, the computation is performed
in the P-pixel by combining the integrated spikes in the P and N pixels (Figure 4.21). The pixel level
implementation of the Barlow-Levick model contains 34 transistors and 4 capacitors. In comparison
to the Reichardt and Adelson-Bergen models, this implementation contains fewer transistors and
therefore is more space efficient. The layouts of the Barlow-Levick receiver pixel and chip are shown
in Figure A.16 and A.17. The Barlow-Levick chip includes 6× 7 pixels.

4.4 Characterization results

In this section, we present the characterization results of the multi-chip implementations of the
algorithms. The experiments were performed by using computer-generated sinusoidal grating stimuli
on an LCD screen. In the experiments, while one parameter was varied, the others were held
constant. In order to remove the phase dependence of the sensor and prevent artifacts, output
voltages were averaged over 10 temporal periods of the stimulus. The output of the sensor was
obtained in current mode and converted to voltage by utilizing a current sense amplifier with a 3.9
megohm feedback resistor.

The first experiment was performed by using a sinusoidal grating stimulus to test the direction
selectivity of the sensors for preferred, null, orthogonal motion, and no-motion cases. As can be seen
in Figure 4.22, the responses of the sensors quite clearly prove the direction selectivity. In case of
an orthogonal motion stimulus, all sensors responded with zero average response.

In the second experiment (Figure 4.23), it is observed that all sensors show sinusoidal depen-
dence to an orientation sweep of a sinusoidal grating as expected from the theoretical results of the
algorithms. At 90 degrees all the sensors yield a positive peak response and at 270 degrees their
outputs reach a negative maximum.

A contrast experiment was achieved by changing the contrast of the sinusoidal stimulus from
0 to 100 percent. This experiment was repeated 100 times for each sensor and in Figure 4.24 the
mean outputs of these experiments are illustrated. All the sensors responded strongly down to 10
percent contrast and direction selectivity was possible even lower. The Adelson-Bergen and Barlow-
Levick sensors showed better response compared to the Reichardt sensor. The reason might be the
multiplication circuit in the Reichardt receiver pixel. The positive and negative pixel circuits have
different Vmulbias biases (Figure 4.11). This bias is a normalizing bias employed in the four quadrant
multiplier (explained in Section 2.8). Any mismatch between bias transistors or a difference in the
value of the bias may cause problems for low-contrast levels. Also, this circuit is assumed to work as a
four quadrant multiplier only if the resistances R1 and R2 are equal. In the implementation, we used
a diode connected transistor to realize R1 and a normal transistor to realize R2 in order to subtract
the currents from P and N pixels. If there is a mismatch between these transistors then the final
output deviates from the expected result. The transistor mismatch is very probable for low current
levels which correspond to low contrasts. Hence we can say that the main reason for the Reichardt
sensor’s unexpected response is the mismatch between the transistors that realize the resistors. This
sensor can be improved by using diode connected transistors for both resistances. Alternative to
this solution, employing one quadrant multiplier instead of using four quadrant multiplier can be
a better solution since minimizing transistor mismatch is a difficult problem. The circuit shown in
Figure 2.9a is a good candidate for this purpose.

In the last two experiments, the sensors were tested to acquire the spatial and temporal frequency
characteristics of the implementations. The responses of the sensors to a temporal frequency sweep is
shown in Figure 4.25. The output of the Adelson-Bergen sensor peaks at around 1 Hz, the Reichardt
sensor peaks around 2Hz and the Barlow-Levick sensor reaches to its peak response around 3Hz.
The tuned temporal frequencies of the sensors can be changed by altering the voltage values of
the integrating receiver circuit bias Vqua as illustrated in Figure 4.26. Besides, it is obvious from
the temporal frequency response that the sensors can detect the motion for a velocity range of
more than one order of magnitude. These responses justify the use of the integrating circuit as
a temporal filter in the motion computation. Moreover, the responses of the sensors to a spatial
frequency sweep are illustrated in Figure 4.27. The plots of the multi-chip sensors peak around
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0.4 cycles/pixel and the sensors show a strong spatial aliasing around 0.9 cycles/pixel. Lastly, in
Figure 4.28, the spatiotemporal responses of the sensors are illustrated. These plots show the mean
output of the sensors when they are simulated by sinusoidal gratings varying in both spatial and
temporal frequency. The mean output is plotted for spatial frequencies on the X-axis versus temporal
frequencies on the Y-axis. It is clear from the graph that the models respond best to a particular
spatiotemporal frequency for which they are tuned and their response decreases at other frequencies.
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Figure 4.22: Raw temporal output of the motion sensors. These outputs are not averaged and
represents the real time single pixel response of the sensors. In the interval of 0-3 seconds a sinusoidal
stimulus is presented in the preferred direction. Between 3-6 seconds a sinusoidal stimulus moving
orthogonal to the sensor orientation is presented. After that, the sensor is exposed to a null direction
sinusoidal stimulus. Lastly, no stimulus is presented between 9-12 seconds. (a) Raw data of the
Adelson-Bergen sensor.(b) Raw data obtained from the Reichardt sensor. (c) The Barlow-Levick
sensor’s raw data.
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Figure 4.23: Orientation sweep of a sinusoidal stimulus. The responses were averaged and therefore
represent the mean responses of the sensors. The stimulus was presented at varying directions relative
to the motion sensor, which is optimally oriented for a stimulus at 90 degrees. (a) Orientation sweep
response of the Adelson-Bergen model. (b) Response of the Reichardt sensor to orientation sweep.
(c) Orientation sweep response of the Barlow-Levick model.
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Figure 4.24: Contrast sweep of a sinusoidal stimulus. The responses represent the mean output
of the sensors. (a)The response of the Adelson-Bergen sensor. (b) The response of the Reichardt
sensor. (c) The response of the Barlow-Levick sensor.
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Figure 4.25: Temporal frequency sweep of a sinusoidal stimulus. The responses represent the mean
output of the sensors. (a) The response of the Adelson-Bergen sensor. (b) The Reichardt sensor
response. (c) The response of Barlow-Levick sensor.
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Figure 4.26: Variation of temporal frequency tuning. By changing the bias Vqua, it is possible to
change the temporal frequency tuning of the sensors. Each curve in these plots are at a different
bias setting. The overall envelope of all plots is the photoreceptor temporal frequency response, the
low frequency cutoff of which is due to adaptation, and the high frequency cutoff of which is due to
the capacitance driven at its output and its biases.
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Figure 4.27: Spatial frequency sweep of a sinusoidal stimulus. The responses represent the mean
output of the sensors. (a) The response of the Adelson-Bergen sensor. (b) The Reichardt sensor
response. (c) The response of Barlow-Levick sensor.
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Figure 4.28: Spatiotemporal frequency plots of the sensors. These spatiotemporal responses rep-
resent the mean output of the sensors. The mean for specific spatial and temporal frequencies is
obtained by averaging the sensor responses in time. Light colors indicate positive and dark colors in-
dicate negative average response. (a) The response of the Adelson-Bergen sensor. (b) The Reichardt
sensor response. (c) The response of Barlow-Levick sensor.
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Chapter 5

Obstacle Avoidance Algorithm

A variety of techniques and implementations have been proposed to solve the problems faced in
navigation in an environment cluttered with obstacles. In the implementation of a biologically
inspired robot that can navigate in complex environments, Franceschini et al. [27] utilized the fact
that during pure translations, the optical flow generated by the ego-motion of the observer and the
movements of other objects contains information about the distance of these objects relative to the
observer. The problem with this implementation is that when the visual axis is close to the heading
direction, the system becomes inefficient in detecting the objects right in front of it; this problem is
known as the parallax blind spot problem. Later, Mura and Franceschini [59] presented a scanning
movement behavior as a solution to this problem.

As an alternative to scanning movement behavior, zigzag behavior was suggested to be an effective
way of dealing with the parallax blind spot problem. This behavior was inspired by observations
obtained from experiments on some insects and lower vertebrates [69], [82]. Firstly, Sobey [70] used
this behavior in his obstacle avoidance implementation. In his system, the optical flow is collected for
16 frames for each discrete movement and the decision for the next movement is made on the basis
of the distance of an identified object. Secondly, Lewis [53] utilized this strategy in his biologically
inspired system by integrating it with information gleaned from both the behavior of bees and the
anatomy of flies. This system exploits the findings of experiments by Srinivasan and Zhang [73] on
the movement detection system of bees. These experiments elucidated the fact that the centering
response of bees is mediated by a direction-insensitive movement system. Accordingly Lewis [53]
employed the principles of the non-direction-selective motion sensor into his implementation to build
a robust biologically inspired system that can navigate between obstacles.

In another implementation by Huber and Bulthoff [39], an artificial agent was developed by
integrating biological principles with the capabilities of genetic algorithms. In this system, the
computation is performed by using visual input from 360 degrees of the visual field. After computing
the optical flow field, the motion outputs of the sensors are spatially weighted by a gain function
that is optimized by a genetic algorithm. As a result of the experiments, they concluded that the
genetic algorithm yields its maximum sensitivity for a frontolateral visual field. By integrating this
structure with the genetic algorithm, they succeeded in obtaining a generation that could navigate
in complex environments.

The lobula giant movement detector (LGMD) and its postsynaptic partner the descending con-
tralateral movement detector (DCMD) are the neurons located in the visual system of the locust.
These neurons are wide-field visual interneurons that can trigger escape response to objects ap-
proaching on a collision course. Blanchard et al. [8] conducted experiments with a mobile robot
to investigate collision avoidance behavior by using a model based on the neuronal responses of the
LGMD neuron in locusts. The escape behavior is initiated when the angle subtended by a looming
object exceeds a certain threshold. Also, Indiveri [40] presented an analog VLSI architecture that
implements a functional model of the DCMD neuron.
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Figure 5.1: Motion parallax. (a) The effect on the retina of egomotion towards an object is illus-
trated. (b) The effect of egomotion and/or object motion on a collision course is depicted.

5.1 Algorithm

In this section we describe the main components of the algorithm that we utilized to build the obstacle
avoidance system on a simulated agent. Firstly, we used motion parallax to obtain the properties
of the optical motion field created by the agents own motion and/or the motion of objects in the
visual field. Secondly, we made use of the information obtained from physiological and behavioral
experiments conducted on bees to construct the centering behavior. Lastly, we employed findings
obtained from locust and pigeon anatomy and physiology in order to build a collision sensitive
system.

5.1.1 Motion Parallax

In the case of pure translation, motion parallax provides reliable information on the structure of
the environment since retinal image motion yields larger responses for closer objects relative to
distant objects. This information has been utilized in different implementations to build artificial
systems that can navigate successfully. For instance, Franceschini et al. [27] employed motion
parallax computation in their artificial obstacle avoidance system by evaluating the optical flow on
a horizontal 360 degree ring sensor. In this study we use this fact to compute the relative distance
of objects in order to ensure a safe navigation path for the simulated agent. We also utilize it in a
time-to-contact computation to avoid collisions with objects in the heading direction of motion.

In Figure 5.1a, the effect of an object’s motion on the retina while the observer moves is illus-
trated. In this case, the object is not in the heading direction. Hence in order to avoid collision
with such an object we have to relate the relative distance and the speed of the observer to those of
the object. In this figure θ is defined as the angle subtended by the object from the line of motion,
x represents the distance of the object perpendicular to the line of the heading direction and d is
used to show the distance of the observer perpendicular to the trajectory of the object. Also Vo
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represents the speed of the observer and Vr is used to show the speed of the object’s image on the
retina. In addition, m represents the distance of the object’s image on the retina perpendicular to
the line of the heading direction and n is used to show the length of the retinal focus.

In Figure 5.1a, the relation between the distance parameters and the angle can be found as
follows:

θ = tan−1 x

d
= tan−1 m

n
(5.1)

The time derivative of θ gives some idea of the relative change in the distance parameters. In this
study, we assume that the movement of the observer is a pure translation in the heading direction
at a constant speed and therefore Vo can be set equal to the time derivative of the distance d and
Vr can be set equal to the time derivative of the distance m.

∂θ

∂t
=

−x
d2

1 + (x
d )2

∂d

∂t
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d
tan θ

1
1 + tan2 θ

Vo (5.2)

∂θ

∂t
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1
n

1 + (m
n )2

∂m

∂t
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1
n

1
1 + tan2 θ
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where x and n are assumed to be constant and, Vo = ∂d
∂t and Vr = ∂m

∂t . By equating these two
functions and ignoring the minus sign in equation 5.2, we can find the following expression:

Vr =
m

d
Vo =

nx

d2
Vo (5.4)

These equations provide certain relationships between the distance and the speed parameters.
From these relations, we can easily derive the distances x, d and z (the distance of the object from
the observer) as follows:

x =
m2

n

Vo

Vr
(5.5)

d = m
Vo

Vr
(5.6)

z =
√

x2 + d2 =
Vo

Vr

m

n

√
m2 + n2 (5.7)

From these equations, the relative distance parameters can easily be calculated without knowing
the external distance parameters such as d and x. In addition, m, the distance of the retinal image
motion from the centerline can be easily incorporated into any calculation since it can be extracted
from the sensed retinal motion.

The optical flow computation can be performed with an array of motion sensors, and with enough
resolution, accurate behavioral responses can be produced. The results attained from this analysis
are useful in particular for centering behavior to avoid collisions by selecting a path equidistant from
nearby objects.

In the case when an agent is supposed to avoid collisions with obstacles or initiate an escape
response, Figure 5.1b can be utilized to illustrate the scenario and to perform mathematical analysis.
As in the previous case, θ is defined as it is formulated in Equation 5.1. From this formula, the
relation between the distance parameters and the velocity information can be acquired as in the
first case. In contrast to the first case, in the second case x represents the radius of the object. In
addition to this, in the previous case the main parameter was z, the distance of the object from the
observer, but now the crucial parameter becomes d, the distance of the observer from the center of
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the object.
By using the relations between the speed and the distance parameters, we can calculate the

distance of the observer from the center of the object as follows:

d = m
Vo

Vr
(5.8)

The time-to-collision with the object can be found as follows:

tcollision =
d

Vo
=

m

Vr
(5.9)

In this equation, m and Vr can be extracted from the optical motion fields on the retina. By
computing these parameters, the time-to-collision can be easily obtained.

5.1.2 The Centering Behavior

The work done with bees by Srinivasan and Zhang [74] elicited the fact that in their visual course
control bees balance the speeds of image motion on their two eyes (such as when navigating through
a narrow gap). The most crucial point in this kind of behavior is that bees maintain an equal
distance from objects in their environment by balancing the apparent angular speeds on their two
eyes. In addition, they balance the image speeds independent of the contrast or spatial frequency of
the objects on the two sides.

The underlying mechanism for the centering behavior is a non-direction selective movement
detector, output of which encodes retinal velocity information [73], [74]. Unlike the direction selective
system that is used in motion computation for optomotor responses, the direction insensitive pathway
has functions in obstacle avoidance and centering behavior. Moreover, it has been found that the
non-direction selective movement system has a higher frequency response relative to the direction
selective pathway [72].

It is suggested that the centering mechanism may also play a role in the movement avoidance
response [71], [75]. This kind of behavior is observed in bees, and they use it to avoid flying toward
moving objects. Thus the centering response can be used to explain movement avoidance as well as
obstacle avoidance.

In implementations on robots or different agents, the main aim is to maximize the robustness
and effectiveness of the obstacle avoidance system. The centering behavior provides a way of ac-
complishing this feat. It can be successfully incorporated into systems to minimize the possibility
of collisions. Although Srinivasan et al. [74] state that bees balance the angular speed of images
perceived by their two eyes, this statement is not sufficient to determine the neural computation
involved in this balancing procedure. Furthermore, retinal image motion can be processed in dif-
ferent ways to balance the apparent angular speed on the two eyes. For example, in a cluttered
environment, bees navigate between objects which are at different distances from them and which
therefore cause different motion responses on their retinas. Even if the motion vectors on both eyes
are different by two orders of magnitude, centering behavior is still achieved by bees.

In this study, the centering response is achieved with pure translations. The main reason for this
choice is that in order to realize a robust collision avoidance system, a purely translatory motion
signal is needed [20], [27], [85]. The motion contrast information is extracted from the right and the
left optical motion fields on the two eyes. This information is used as a gain in the computation of
the next rotatory movement of the system. In this way, the effect of a larger motion on one of the
eyes can be suppressed with a motion in opposite direction. Assuming that Iright and Ileft are the
angular speed of image perceived by the right and left eye respectively, then motion contrast can be
expressed as follows:

Icontrast =
Iright − Ileft

Iright + Ileft
(5.10)
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Icontrast not only provides information on the relative magnitude of Iright and Ileft but also gives
an indication whether the motion is in the preferred or null direction. Its response can be saturated
for a range of values and the linearity range can be adjusted accordingly if it is used with a nonlinear
function as shown below:

Igain = Ibias tanh(Clinearity · Icontrast) (5.11)

where Clinearity is a coefficient used to adjust the linear region of the tanh function. The contrast
and gain functions are illustrated in Figure 5.2. We utilize the contrast of the right and left motions
to determine the amount of the rotatory movement. If the leftward motion is bigger than the
rightward one, the gain will be used to determine the amount of the rotation to the right, and
vice versa. By using these equations, different design choices can be investigated to build a robust
artificial system. In this thesis, we studied three different design strategy to be able to determine the
best way of representing the angular speeds on both eyes. For this purpose, we employed a 1D array
of elementary motion detectors (EMDs) that are based on Adelson-Bergen algorithm (Section 4.3.2)
to obtain the small field visual motion response on both eye. The motion response of this algorithm
depends on the spatiotemporal frequency of stimulus. Therefore, the Adelson-Bergen visual motion
sensor yields its maximum motion output when the spatiotemporal frequency of stimulus matches
the spatiotemporal tuning of the sensor.

Firstly, an obstacle avoidance system can be developed by utilizing the fact that the maximum
velocity signals the closest object to each eye. In this way the system is made to focus on imminent
collisions. In this thesis, since we use Adelson-Bergen sensor instead of a velocity sensor we utilize
the spatiotemporal response of the sensor to employ this obstacle avoidance method. By using EMD
responses and the maximum operation, we can express Iright and Ileft in Equation 5.10 as follows:

Iright = max(IEMDr1, IEMDr2, ..., IEMDrn) (5.12)

Ileft = max(IEMDl1, IEMDl2, ..., IEMDln) (5.13)

where IEMDri and IEMDli represent the motion outputs of the EMDs on the right and left eyes,
respectively, and n is the number of EMDs on each eye. Using the maximum velocity in navigation
may cause sudden turns or unexpected responses. Also, even if an object is in front of the agent, since
the motion detection in the heading direction is not too effective in signaling alone motion component
of that object, the response will not be reliable. However, it is still very effective particularly in
dealing with navigation in cluttered environments, because it focuses only to the closest objects. In
this way, the centering task can be reduced to the navigation through the closest objects.

Secondly, the spatial average of angular speeds on both eyes can be employed to compute the
motion contrast and gain. In order to obtain the average of the motion outputs on both eyes, we use
a predetermined threshold. In this way, we can determine the number of EMDs that have motion
responses exceeding this threshold. At the same time, we sum the motion responses that exceed the
threshold. By using these parameters we can determine Iright and Ileft as follows:

Iright =
(...IEMDri−1 + IEMDri + IEMDri+1 + ...)

k
(5.14)

Ileft =
(...IEMDlj−1 + IEMDlj + IEMDlj+1 + ...)

m
(5.15)

where IEMDri is the ith right EMD response that exceeds the threshold and k represents the number
of responses that exceed the threshold. Similarly, IEMDlj is the jth left EMD response that is larger
than the threshold and m represents the number of responses that have values larger than the
threshold. The information obtained from this computation can provide reliable data on the nature
of the environment. The averaging operation ensures a safe navigation even in the presence of objects
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Figure 5.2: Motion contrast. (a) Icontrast is illustrated for the constant values obtained by keeping
Ileft=100 and changing Iright from 0 to 1000. (b) The response of motion contrast is illustrated on
a log scale. (c) The response of the Igain function for different values of Clinearity.
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Figure 5.3: Navigation using different centering techniques. (a) Using the maximum motion output
in the visual field. (b) Using the average motion output of the optical visual fields on each eye. (c)
Using sums of the motion responses on each eye.
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that causes different spatiotemporal responses. Although in this kind of computation there has to
be a threshold operation, which is not preferable by its nature of operation, this computation can
still be employed to realize the centering behavior.

Lastly, the sum of the right and left motions can be used as a reference for the rotatory move-
ments. In this case, the agent tries to avoid the region that causes larger spatiotemporal motion
output. In this way, it minimizes the probability of collision since a larger motion response may also
mean more objects or closer objects. By using the sum operation, we can express Iright and Ileft as
follows:

Iright = IEMDr1 + IEMDr2 + ... + IEMDrn (5.16)

Ileft = IEMDl1 + IEMDl2 + ... + IEMDln (5.17)

In order to obtain quantitative results to compare the effectiveness of these algorithms, we
simulated them in 2-D environments. In these simulations, objects are represented as cylinders and
the observer is represented as a robot that has 90 degrees of visual field. The size and contrast
of the objects are set by their distance from the robot. The arena that the robot navigates in is
surrounded by walls and the objects are randomly distributed in it. If the robot navigates out of a
predetermined ratio of the arena, a 180 degrees turn is initiated to prevent the robot from leaving
the arena. At each step, the robot process the motion created by its own visual motion by using
the Adelson-Bergen algorithm and decides upon the next step by applying the algorithms explained
above.

After 100,000 steps of simulations for each algorithm we obtained the results shown in Figure
5.3. These figures reinforce the idea that the sum of non-direction selective velocity fields yields
the best result. In the first and second figures (Figure 5.3a, Figure 5.3b), it is seen that as the
agent navigates, it has 3 collisions in each case, whereas in the last figure (Figure 5.3c), the agent
navigates by summing the velocity vectors and has no collision. From these simulations, we can
safely conclude that taking the sum of velocity vectors on both eyes is the best way of implementing
the centering behavior.

5.1.3 Looming Sensitive Neurons and Time-To-Collision Computation

Organisms are anatomically specialized in their environment to cope with complex behavioral tasks.
While the largest motion detectors in flies are those responding best to adjust their flight path,
the largest motion detector of locusts is dedicated to avoid rapidly approaching objects [27]. Wang
and Frost [83] found that in the pigeon brain, the nucleus rotundus responds maximally to objects
on a collision course. In this respect, the anatomy of locusts and pigeons provides great deal of
information to model neurons specialized in object avoidance and escape mechanisms.

The locust obtains its sensitivity to approaching objects by the neural computations performed by
wide-field visual neurons, namely the lobula giant movement detector (LGMD) and the descending
contralateral motion detector (DCMD). The DCMD neuron fires when there is a movement anywhere
within the visual field, but responds strongly to approaching objects on an impending collision course.
Rind et al. [64] proposed that the DCMD tracks edge motion throughout the object approach and
produces strongly maintained response when the object moves close to the eye.

The input organization of the LGMD neuron is modelled by Rind and Bramwell [63]. In their
work, they claim that the input elements of the LGMD neuron generate excitations and lateral
inhibitions when the eye is exposed to the approaching object. Then a critical race between excitation
and inhibition determines the response of the neuron. In contrast to this model, Hatsopoulos et
al. [32] proposed an equation that assumes a symmetric expansion of the object and produces a
response that can be used to avoid collisions. They suggested that the firing rates of the LGMD
and the DCMD depend on the product ψ(t− δ)e−αθ(t−δ), where θ(t) is the angular size subtended
by the object during approach, ψ(t) is the angular edge velocity of the object, and α is a parameter
determined by the angular threshold size θthr. Furthermore, it was claimed that the LGMD neuron
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performs the multiplication operation and detects the angular threshold during the approach of
objects along a trajectory perpendicular to the axis of the locust eye [28]. This product reaches a
peak when the approaching object subtends a particular angle. This information can be used in
avoiding collisions if a circuit is implemented to detect this peak-firing rate. However, this task is
not easy to achieve since time is the most limited parameter in collision avoidance. In addition, the
time of the peak does not really indicate the time to collision since a slower and larger object causes
an earlier peak response than an object with smaller size and higher speed.

In their study, Frost et al. [77] reported that the same parameters processed by the locust
are utilized by the neurons in the nucleus rotundus of pigeons in collision avoidance. However, in
contrast to locusts, pigeons have neurons which signal the time to collision [77]. For the reason that
pigeons have higher spatial resolution compared to those of the invertebrates, the time to collision
computation can be more easily and reliably performed by their neurons.

The accurate time to collision can be calculated by using the knowledge of the distance and
speed of the movement of the object. Gibson [29] introduced a parameter τ that can signal the time
to collision, where τ ≈ θ(t)

θ′(t) . Later, Lee and Reddish [51] studied diving birds and their behavioral
responses. They proposed that the ratio between the retinal image size at a given instant and the
rate of expansion of the image can be reliably used to compute the time to collision. Furthermore,
different psychophysical experiments elicited that humans also use τ to estimate the time to collision
[50]. The problem with τ computation is that this parameter is accurate only when the angular size
of the object is not large.

As a result, a simple strategy to avoid obstacles can be achieved by building the collision sensitive
LGMD model proposed by Rind et al. [63] but this model does not signal the time to collision.
Therefore, a more sophisticated algorithm is required to cope with collision avoidance in complex
environments. In this respect, time to collision (τ) computation proposed by Gibson [29] can be
implemented to realize a robust and accurate collision avoidance system. In this thesis we suggest a
novel hardware implementation of the time to collision computation by using the size and expansion
rate parameters.

5.2 Hardware Architecture of the Centering Behavior

In this section, a hardware implementation of the centering behavior using a low-power analog VLSI
system is described. In order to build a robust and reliable system based on this behavior, non-
directional velocity information should be obtained from the optical flow field and accordingly the
sums of the left and right eye motion fields should be calculated. For our hardware implementation,
we utilize the Adelson-Bergen correlation-based visual motion sensor to obtain small field motion
output. However, the Adelson-Bergen motion detector is not exactly a velocity sensor, rather it is a
spatiotemporal frequency tuned visual motion sensor since its velocity response confounds velocity
with the spatial structure of the object it is exposed to. In this context, we refer to the velocity as
the ratio of the temporal and spatial frequencies, mathematically shown as follows:

V =
wt

wx
(5.18)

where V represents velocity, wt is the temporal frequency and wx is the spatial frequency of the
image motion.

A solution to the problem of velocity estimation is proposed by Srinivasan et al. [74]. They
suggested that a velocity sensitive model can be constructed by using multiple correlators. This
model can be achieved by tuning each correlator to a different spatiotemporal frequency as shown in
Figure 5.4. In this way, the maximum response obtained from one of the correlators will estimate the
velocity of the image. Besides, even if the contrast of the optical image changes, since all correlators
will respond to this change in the same way, the correlator that produces the maximum motion
output of the system will not change. This system can be easily implemented by incorporating
multiple visual motion sensors with the winner-take-all circuit.
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Figure 5.4: Multiple-correlator scheme realized by correlation-based motion detectors. The responses
of a correlation based motion detector are shown for three different spatiotemporal frequency tuning.
Each line that crosses the maximum of a correlator represents the angular velocity of the image
detected by that correlator. The correlators are modelled by the two-dimensional Gaussian function.
Reproduced from [74] without permission.
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Figure 5.5: The modular implementation of the multi-correlator based velocity sensor. In this
implementation one sender chip is interfaced with three receiver chips. Each receiver chip is tuned
to a different spatiotemporal frequency. In this way, the winner take all network can determine the
maximum response which is an estimation of optical image velocity.

A multiple-correlator based velocity sensor is computationally intensive and would require lots
of transistors. Therefore, to obtain a reasonable fill factor in the front end chip, we utilized the
multi-chip version of the Adelson-Bergen motion detection algorithm (see Section 4.3.2). Because
the hardware implementation of the Adelson-Bergen model is space efficient and produces a highly
reliable motion output, we prefer it in performing small field visual motion computation. Also,
since we are interested in direction insensitive motion output we take the absolute value of small
field spatiotemporal motion outputs. In Figure 5.5, an implementation is proposed to realize the
multiple-correlator scheme illustrated in Figure 5.4. This system employs one sender chip and
three motion computing receiver chips that are tuned to different spatiotemporal frequencies. The
maximum response is determined by the winner take all circuit and estimates the velocity of optical
image.

The main aim in the implementation of the centering behavior is to sum the motion outputs
from the small field motion computation pixels in all receivers while keeping the velocity estimate
accurate enough to realize the centering behavior. As shown in Figure 5.6, the sensed signals are
transferred to three different receiver chips. Each receiver chip is tuned to a different spatiotemporal
frequency. Since these receiver chips have the same high level architecture, their scanners can be
synchronized to scan the same spatial positions at the same time. This enable us to compare the
motion outputs of pixels in different receiver chips. The result of each comparison is stored in a
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Figure 5.6: An implementation of multi-correlator based velocity sensor realized with three correla-
tors to be used in wide field velocity detection of the retinal image. Response of the sender pixels
are transmitted to three different receiver chips that are tuned to different spatiotemporal frequen-
cies. The motion outputs of same pixels in each receiver chip are scanned by the micro processor at
the same time to be able compare them. The maximum output is stored in the memory and once
processor scans the last pixel, all stored motion outputs are summed.
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Figure 5.7: The second implementation of multi-correlator based velocity sensor. One sender and
three receiver chips are employed to detect the small field motion output for three different spa-
tiotemporal frequency tunings. The pixel responses of each receiver chip are summed individually
and then compared by winner take all circuit to estimate the velocity of optical image.
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memory. The memory is employed to store the maximum motion outputs of three receiver chips
and to sum them whenever they are available. The sum of the maximum small field motions can be
mathematically represented as follows:

Isum = max1(IEMD1 , IEMD2 , IEMD3) + max2(IEMD1 , IEMD2 , IEMD3)...

+maxn(IEMD1 , IEMD2 , IEMD3) (5.19)

where IEMD represents the small field motion output of the elementary motion detectors and it
is assumed that the system has three different types of elementary motion detectors that are each
tuned to a different spatiotemporal frequency.

Apart from that, an alternative strategy can be proposed to obtain more robust results. In the
computation of the centering response, we focus on the sum of the small field motion outputs to
conceive the wide field properties of the optical field and because of that, small differences in the
small field motion usually has small effect in determining the overall response. Therefore, instead of
finding the individual maximum of the small field motions that are tuned to different spatiotemporal
frequency, we can compare their overall sum to reach a decision about the velocity of the optical
image. In order to implement such a computational scheme as shown in Figure 5.7, the same signal
the sender chip produces can be transferred to multiple receiver chips that are tuned to different
temporal frequencies. After the small field motion computation in these receiver chips, the pixel
outputs are absolute valued and then summed. Accordingly, each receiver will produce a sum and
this sum will be compared with other receiver outputs to decide for the maximum wide-field velocity.
The computation can be formulated as follows:

Isum = max(sum1(EMD1, ..., EMDn), sum2(EMD1, ..., EMDn),

sum3(EMD1, ..., EMDn)) (5.20)

In this formula, we assume that there are three different receiver chips tuned to different spa-
tiotemporal frequencies. This kind of computation is not equivalent to summing the individual
maximum of the small field motion, however, in this way, we can decrease the complexity and the
computational load of the overall system.

5.2.1 Circuit implementation of the direction insensitive movement de-
tector neuron

In this section, we explain the circuit implementation of the direction insensitive motion detection
neuron that mediates the centering behavior. We realize this neuron by utilizing a low-power VLSI
multi-chip system.

A multi-chip system can be implemented by incorporating a sender chip with one or multiple
receiver chips. Each pixel in the sender has an AER circuit so that immediate changes can be
reliably sent to receiver chips. Also, the amplitude of the changes sensed by each photoreceptor is
encoded by the firing rate of the AER system so that within a small time frame the response of a
photoreceptor can be transferred to the receivers.

A receiver chip is utilized to perform small- and wide-field motion computations. It employs the
elementary motion detectors (EMD) to obtain small field motion vectors. For that purpose Adelson-
Bergen motion detectors (see Section 4.3.2) are used and the outputs of these detectors are absolute
valued to realize the direction-insensitive visual motion sensor. Each detector in the receiver chip
integrates the signals sent by the sender and performs the small-field motion computation. These
pixels integrate the signals from the sender so that the amplitude of the changes in the intensity
level of the image sensed by each photoreceptor can be reconstructed and necessary delays to realize
the correlation scheme can be obtained (see Chapter 4).

The P and N pixels that integrate the positive and negative parts of the signal sent by the sender
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are illustrated in Figure 5.8a and Figure 5.8b, respectively. The P pixel is designed to contain
the motion computation circuitry, whereas the N pixel includes only AER interface circuit and
integrators. After the integration stage, the motion computation is performed by using subtraction
and absolute value circuits. The current output of the Adelson-Bergen sensor can be formulated as
follows:

Imotion = |I2negD + I1neg − I2posD − I1pos|+ |I2neg + I1posD − I2pos − I1negD|

−|I2posD + I1neg − I2negD − I1pos| − |I2neg + I1negD − I2pos − I1posD| (5.21)

After this stage, an absolute value circuit is added to obtain the final direction-insensitive motion
output. The final motion output of each EMD can be formulated as follows:

Ioutput = |Imotion| (5.22)

The wide-field motion output is obtained by making use of the capabilities of the scanners that
help us sum the motion outputs of all EMDs. In this way, we obtain a sender-receiver chip pair that
can qualitatively signal the motion output created by its own motion or movements of objects in its
environment.

This system can be used to detect direction-insensitive motion sensed by the right and left eyes.
The motion output does not represent the motion velocity but an implementation of the multi-
correlator based velocity sensor is straightforward with a modular design strategy.

If a multi-correlator based velocity sensor is desired, then receiver chips that are tuned to dif-
ferent spatiotemporal frequencies can be achieved by using the capabilities of the AER circuitry.
Firstly, the temporal frequency tuning of each chip can be adjusted by changing the biases of the
integrator circuit. Secondly, the spatial tuning can be changed by interchanging the columns of the
AER system in such a way that instead of computing the motion response of neighboring pixels,
interaction between odd-numbered pixels or even-numbered pixels is used. This strategy can be
achieved by changing the column numbers of the receiver chip as illustrated below:

Sender chip Receiver chip
1 1
2 3
3 5
4 2
5 4
6 6

The unwanted interaction between the second and fifth columns can be avoided by implementing
the circuit in such a way that there will not be an interaction between these columns. Although
this strategy is appealing in terms of its simplicity, the cost of building extra receiver chips makes
this implementation unattractive. For that purpose, a PIC can be employed to map the addresses
sent from the sender to the receiver chip. Besides, since in this case we do not have any control
over the internal structure of the chip, we need to use a new mapping strategy to avoid unrelated
interaction between the second and fifth columns. An alternative mapping can be realized as follows:

Sender chip Receiver chip
1 1
2 3
3 5
4 6
5 4
6 2

In this case we will have motion output obtained from the interaction between the fifth and sixth
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(a)

(b)

Figure 5.8: The implementation of the circuit that integrates the positive and negative parts of the
signal sent from the sender and computes the final motion output. (a) The P pixel that consist of
AER interface circuit, integrators, absolute value circuits and subtractors. (b) The N pixel that only
integrates the negative part of the signals.
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columns of the sender. This non-direction selective velocity sensor system mediates the centering
behavior. It can be used in applications where an agent is needed to navigate between objects in a
cluttered environment.

The final chip contains 6× 6 pixels and the layouts of the pixel and the chip are shown in Figure
A.18 and Figure A.19, respectively.

5.3 Hardware Architecture of the Escape Behavior

Although the centering behavior is a very efficient way of dealing with navigation in cluttered
environments, it becomes ineffective when it is challenged by objects in the heading direction. Par-
ticularly, the symmetric expansion of an object in the heading direction will not cause a robot driven
by the centering response to turn away. For this reason, a looming sensitive sensor should be imple-
mented and placed in the heading direction of the system. In this way, during the pure translatory
movements of the robot, the looming sensitive sensor can signal the objects that are on a collision
course or can compute the time to collision parameter so that the angle of rotation to escape from
the object can be calculated without initiating a sudden turn.

Time to collision is defined as τ = θ
δθ
δt

and in Equation 5.9 it is found as tcollision = m
Vr

. In 1D

motion computation, if the object is a rigid body without texture, this formula can be implemented
by detecting the symmetric (or close to symmetric) movement of the maximum velocity vector in
the visual field of each eye. In order to analyze the wide-field motion in the heading direction, we
separated the visual field into left and right parts. As in the case of the implementation of the
centering behavior, we utilized the multiple-correlator velocity model. The reason for this choice
is that we need to find the expansion rate and this can be achieved only by finding the velocity of
the edges of the object. We are particularly interested in the right motion in the right eye and the
left motion in the left eye because the looming state of an object can be detected from its size and
expansion rate. Such a system can be implemented by using the right sensitive motion detectors in
the right eye and the left motion sensitive motion detectors in the left eye.

Firstly, we assume a symmetric or quasi-symmetric expansion of an object in the heading di-
rection, because in other cases, the centering response can initiate enough turn to escape from the
object. Therefore, the real problem is to be able to signal an escape response when the object is
looming symmetrically on a collision course. Secondly, we assume that θ or the size of the object
can be estimated by incorporating the maximum operation on the velocity computation pixels. This
helps us detect the maximum velocity that identifies the closest part of the object and/or its edges
in the visual field of each eye. In our algorithm, the maximum operation is improved by employing
a lateral inhibition and excitation network.

Looming is a real time response to movements on a collision course and therefore it has to be
tracked and integrated in time. For this reason, after finding the maximum velocity on each eye,
they need to be tracked in time and checked if the rightward maximum velocity in the right eye is
moving to the right and if the leftward maximum velocity in the left eye is moving to the left. In the
case of expansion, the position changes of the rightward and leftward maximum velocities include
a few expansion parameters such as the time-to-collision and the degree of symmetric expansion.
Also, the correlation between the positions of the left and right maximum velocities can be found to
obtain the information on the object’s degree of symmetric expansion. Assuming that the center of
the visual field is the origin of the position vector, then we can relate the positions of the maximum
velocities to find the symmetry parameter. For instance, if the magnitude of the maximum velocity
positions on each eye are very different, then this information gives us a clue that the expansion
is not symmetric and the centering behavior has to be employed to avoid collisions in such cases.
Therefore, the symmetry parameter can be integrated with the final output to limit the cases when
the escape behavior algorithm does not respond to collisions.

An alternative strategy can be employed by changing the maximum operation with a group of
velocities limited by the maximum velocity operation. This operation finds the maximum velocity in
the motion field and looks for other velocities that are more than a constant fraction of the maximum
velocity (where this fraction is defined in the interval 0 < fraction < 1). Therefore, we determine
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the threshold velocity that can be used to find the velocities of interest. The main purpose of this
operation is to track the closest part of the object and from this information to find the size and
expansion rate. In addition, the rate of expansion can be computed by averaging the velocities
that are bigger than the computed threshold. This can be achieved by determining the number of
velocities bigger than threshold and dividing the sum of velocities with this number.

As a result of these observations, we can find the degree of looming by utilizing the formula found
in Equation 5.9 and formulate the escape parameters that initiate the escape behavior as follows:

Itimeleft =
θ
δθ
δt

(5.23)

Isymmetry =
xmaxright − xmaxleft

xmaxright + xmaxleft
(5.24)

looming =
1

Itimeleft
=

δθ
δt

θ
(5.25)

where x is the sum of the positions of the velocities bigger than threshold. The value of the looming
signals the degree of danger and therefore provides an better indication about possible collisions than
the time-to-collision parameter does. The algorithm that illustrates the computation performed to
find these parameters is shown in Figure 5.9. This algorithm is constructed by employing the multi-
correlator velocity sensor method. In contrast to other algorithms, the visual field is divided into
two parts that represent the left and right eyes. Accordingly, the motion output is obtained by
acquiring the positive part of the right eye motion and the negative part of the left eye motion
(assuming preferred motion is in the rightward direction). After that, the maximum motion output
in each eye’s visual field is determined by the winner-take-all circuit. After that a fraction of the
maximum motion output is used to threshold the small field motion responses on each eye. The
positions and values of the motion outputs that are bigger than the threshold are summed to be used
in the calculation of the expansion parameters. Firstly, the velocity of each eye is determined by
utilizing the winner-take-all circuit as a part of the multi-correlator model. Secondly, the symmetry
of expansion is determined by the contrast calculation of the left-right eye motions of the correlator
enabled by the winner-take-all circuit. Finally, the looming parameters can be used to perform the
time-to-collision computation and to find the degree of danger by integrating the response of these
computations in time.

5.4 Algorithm Implemented on an Agent

In this section, we explain a system application of the centering and escape behaviors incorporated
onto an agent. This agent is illustrated in Figure 5.10.

The visual field is divided into five regions. The sender chips are used as front-end chips and
responsible for signalling the illumination changes in their visual field. Two sender chips on each side
are employed in order to increase the visual field of the agent. The small field motion computation is
performed by the receiver chips. After obtaining the optical flow field, outputs of the receiver chips
are used in the wide-field motion computation performed by the comparison circuit, sum circuit and
micro-processors.

As is indicated in the implementations of the centering and escape behaviors, the obstacle avoid-
ance system incorporates the multi-correlator velocity algorithm and therefore for each sender, three
receiver chips are employed. The comparison circuit finds the maximum sum of the velocities com-
puted by the receiver chips and in this way yields an estimate of the wide-field velocity.

In order to implement the centering behavior, the responses of the comparison circuits are
summed by using a sum circuit. As a result of this operation, we can get an estimate of the
rightward and leftward motion. The responses are sent to the micro-processor which processes this
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Figure 5.9: The final implementation of the escape response. One sender and three receiver chips
are employed to extract the small field motion output. Each receiver chip is tuned to a different
spatiotemporal frequency and its optical field is divided into two regions to represent the right and
left eyes. The motion outputs on each eye are rectified and then the maximum rectified output
on each eye becomes the threshold of motion responses. After the threshold stage, the sum of the
positions and magnitudes of motion signals are calculated to calculate the symmetry, and the right
and left eyes motions.
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information and mediates the movement of the agent. The process includes finding the contrast
of the right motion relative to the left motion. Accordingly, contrast levels that are close to zero
inhibit rotation and allow only translatory movement of the agent. Whereas, motion contrasts that
are close to plus or minus one create the largest rotatory movements.

The centering behavior is utilized to find the safest way in cluttered environments. Also, we
incorporated the escape behavior which detects collisions in the heading direction to improve the
capabilities of the agent. Similar to the implementation of the centering behavior, escape behavior
is realized by using a sender and three receiver chips. However, unlike the receiver chips used in
centering behavior, these receiver chips include the motion detectors that extract the rightward
motion in the right part and the leftward motion in the left part of the visual field. Moreover,
maximum and threshold operations are employed in the chips to find the velocities bigger than some
fraction of the maximum velocity on each part of the visual field. As a result of this computation
we obtain motion outputs and their positions from the left and right parts of each receiver chip.
These motion computation modules are integrated with a comparison circuit and micro-processor.
The comparison circuit finds the maximum velocity pair for the left and right motion and enables
the sum of the positions of motion outputs. After that, the micro-processor takes these motion
output and position values and processes them to find the expansion parameters. In the case of
a predetermined symmetry value the tracking of motion output positions can be enabled by the
micro-processor. Therefore, the position change, which signals the change in the size of the object,
and the average of the velocity values are combined to find the degree of looming caused by the
motion of the agent. Looming is a continuous time operation. For this reason, after each discrete
movement of the agent, the looming value has to be stored in a memory. The time frame with
its associated threshold looming value can be used to determine if the integrated looming value is
signaling any danger.

This agent with its escape and centering behavior can allow successful navigation in cluttered
and hazardous environments and is therefore well-suited for robotics applications.
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Figure 5.10: The final implementation of the centering response and the escape response on an agent.
5 sender chips are used to increase the visual angle of the agent. Receiver chips extract the small
field motion outputs and process them. Comparison circuits, sum circuits and microprocessors are
responsible for escape response and centering behavior.
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Chapter 6

Discussion

In this thesis, monolithic and multi-chip implementations of neuromorphic visual motion models
were explained and a biologically inspired obstacle avoidance system based on the anatomy and
physiological behaviors of flying insects was described.

Firstly, we presented a monolithic implementation of the hysteretic winner-take-all based motion
sensor. This motion sensor exploits the inhibition mechanism that is inherent in the winner-take-all
circuit. Barlow and Levick described this mechanism to explain the direction selectivity in the rabbit
retina. However, we did not directly implement their model, rather, we used the same mechanism to
implement a novel algorithm. This algorithm yields a compact and reliable motion detection model
and makes it possible to realize a high fill factor in the sensors. Although it is very efficient in motion
detection, this motion sensor has its own limitations. The threshold that is used to determine the
winner of two input signals may cause problems in noisy environments. Since it sets the winner
state to first signal that exceeds it, any noise in the system or environment prevents the sensor from
functioning reliably. In order to overcome the effect of noise, the threshold level should be increased.
However, in this case, the response of the sensor to low-contrast stimuli vanishes.

Secondly, we described another monolithic visual motion sensor that is based on the nonlinear
differentiator. As is the nature of differentiation, this model amplifies the noise in the environment.
In order to decrease this effect, we exploited the adaptive characteristic of the photoreceptor to obtain
a temporal window. In addition, we used a differential amplifier before the nonlinear differentiation
stage. This circuit adds a condition to the response of the circuitry. If the DC level of one of
the photoreceptor outputs is higher than the neighboring photoreceptor output, then the noise
that is overridden onto these signals may not effect the efficiency of the system. In turn, this
helps the differentiator stay silent even in the presence of noise. However, if the DC level of the
photoreceptors are the same, then the differentiator amplifies the noise should its amplitude be big
enough. Otherwise, the multiplication of this signal with the temporal window helps the system
depress the noise.

Furthermore, we have described and characterized intensity based multi-chip analog VLSI motion
sensors and presented a new technique to realize the temporal filters needed for motion computation.
By employing a modular strategy, we implemented the Hassenstein-Reichardt correlation algorithm,
the Adelson-Bergen spatiotemporal energy model and the Barlow-Levick motion detection models.
The characterization results clearly elucidate the fact that by using this technique, we can obtain a
reliable, low-power and real time multi-chip neuromorphic motion processing system while retaining
many of the advantages of monolithic implementation.

These systems were implemented by using a sender and receiver chip pair. The sender chip was
employed to transfer the intensity changes to the receiver chip that has the motion computation
circuitry. The sender chip does not contain any interaction between pixels. In turn, this helped
to improve the fill factor of the sender chip. In this chip we were able to obtain 6 × 6 pixels in a
standard 1.5µm CMOS process and 2.1mm × 2.1mm die size. In this study, we presented a new
design that eliminates one of the two AER interface circuits in the sender pixel and increases the
fill factor of the chip. This sender chip will be used as a new front-end chip and we are expecting to
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exceed the number of pixels that can currently be realized on a single chip.
In the implementation of the receiver chips that have motion computation circuitry, we obtained

the best results in terms of space from the Barlow-Levick algorithm. The circuit implementation
of the Hassenstein-Reichardt algorithm in the receiver chip is achieved with 65 transistors and
4 capacitors. The implementation of the Adelson-Bergen algorithm in the receiver includes 55
transistors and 4 capacitors in each pixel. Lastly, the Barlow-Levick algorithm was implemented
by using 34 transistors and 4 capacitors. The Barlow-Levick algorithm yields the most compact
solution to the motion computation.

The characterization of the sensors showed that these intensity-based sensors exhibit very similar
spatiotemporal characteristics. Therefore, there is not much difference in their performances. In this
case, the number of transistors used becomes more important and the Barlow-Levick implementation
provides the most space efficient multi-chip system. The characterization results of these multi-chip
sensors revealed that they respond to the optimal spatial frequencies over a velocity range of more
than an order of magnitude. These sensors are tuned to spatiotemporal frequencies. Hence, they
were implemented in a way that the range of the spatial and temporal frequencies and the contrast
level to which they can respond are maximized. Furthermore, 2D motion computation can be easily
achieved with this implementation by using a single sender chip with two receivers and manipulating
the x and y connections of the address lines of the second receiver. These multi-chip biomimetic
vision sensors will allow complex visual motion computations to be performed in real-time.

Lastly, we designed a biomimetic obstacle avoidance system by exploiting the centering and es-
cape behaviors observed in flying insects. In the motion computation, we utilized motion parallax to
obtain information on the obstacles and structure of the environment. In order to achieve navigation
in cluttered environments, we implemented the centering behavior which is mediated by a direction
insensitive movement detecting system. By taking the absolute value of the Adelson-Bergen algo-
rithm output, we suggested an implementation of a multi-chip nondirection selective motion sensor
to realize the centering behavior. In this thesis, we proposed that multi-correlator scheme can be
used to improve the reliability of the velocity output obtained from the implemented sensor. The
main problem with the centering behavior is that it is not that effective in avoiding collisions with
objects that are in the heading direction. We tried to solve this problem by utilizing the escape
response which is initiated by the lobula giant movement detector in locusts to avoid predators. To-
gether with the centering behavior we obtained profoundly promising results from the simulations.
However, the proposed system in Figure 5.10 has to be improved in terms of the number of motion
chips used in order to make the system more practical in robotics applications. Furthermore, the
optimization has to be done to decrease the number of sender chips and to increase the angle of the
visual field.
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Appendix A

Chip Layouts

In this thesis, we described two different monolithic implementations. Firstly, the hysteretic winner-
take-all based visual motion sensors were discussed in Section 3.1 and the circuit details were de-
scribed in Section 3.1.2. The two pixel level layouts, corresponding to two versions of the algorithm,
are shown in Figure A.1 and A.2. The layout of the fabricated chip is shown in Figure A.3. The non-
linear differentiator based motion sensor was described in Section 3.2 and its circuit was discussed
in Section 3.2.2. The pixel level layouts of the algorithm are shown in Figure A.4, A.5 and A.6 and
the chip layout is shown in Figure A.7, containing all three different version of the algorithm.

Three intensity based multi-chip implementations are described in the third chapter. First,
the circuit details of the fabricated sender chip were given in Section 4.2 and its pixel and chip
layouts are shown in Figures A.8 and A.9, respectively. Second, in Section 4.3.1 we discussed the
Hassenstein-Reichardt correlation model and the details of its implementation with a multi-chip
system were given in Section 4.3.1.3. The layout of the pixel in the fabricated receiver chip is
illustrated in Figure A.10, and the whole chip in Figure A.11. After that we described the Adelson-
Bergen spatiotemporal energy model in Section 4.3.2 and explained the implementation details in
4.3.2.4. This sensor has two fabricated versions and their pixel and chip layouts are shown in Figures
A.12, A.13, A.14, and A.15. We explained the Barlow-Levick algorithm in Section 4.3.3. The pixel
and chip layouts of this algorithm are shown in Figures A.16 and A.17, respectively. Lastly, the
pixel and chip layouts of the centering behavior implementation are shown in Figures A.18 and A.19,
respectively.
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Figure A.1: The layout of the first version of the pixel level implementation of the hysteretic winner-
take-all based motion sensor.
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Figure A.2: The layout of the second version of the pixel of the hysteretic winner-take-all based
motion sensor.
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Figure A.3: The final chip layout of the hysteretic winner-take-all based motion sensor. This visual
motion sensor is called WTA.
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Figure A.4: The layout of the first version of the nonlinear differentiator based motion sensor.
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Figure A.5: The layout of the second version of the nonlinear differentiator based motion sensor.
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Figure A.6: The layout of the third version of the nonlinear differentiator based motion sensor.
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Figure A.7: The final chip layout of the nonlinear differentiator based motion sensor. This chip’s
name is NLD.
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Figure A.8: The layout of sender pixel used for multi-chip implementations.



116

Figure A.9: The final layout of the sender chip. The name of this chip is ABsndr3.
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Figure A.10: The receiver pixel layout of the Reichardt correlation model.
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Figure A.11: The receiver chip layout that implements the Reichardt correlation model. The chip
name is Reichardt rcvr2.



119

Figure A.12: The pixel layout of the first version of the Adelson-Bergen receiver chip.
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Figure A.13: The first version of the receiver chip layout that realizes the Adelson-Bergen algorithm.
The chip name is ABmrcvr3.
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Figure A.14: The pixel layout of the second version of the Adelson-Bergen receiver chip.
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Figure A.15: The second version of the receiver chip layout that realizes the Adelson-Bergen algo-
rithm. This chip is called ABmrcvr3a.
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Figure A.16: The layout of receiver pixel that implements the Barlow-Levick model.



124

Figure A.17: The receiver chip layout that implements the Barlow-Levick model. The chip name is
BL rcvr.
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Figure A.18: The layout of the centering response receiver pixel.
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Figure A.19: The final layout implementation of the centering response receiver chip. This chip is
called ObsavABrcvr.
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Appendix B

Chip biases

In this part, we provide the biases of the chips that have been tested and characterized. First, we give
a set of reliable biases that make robust multi-chip realizations possible. Second, the Adelson-Bergen
receiver chip biases are given. In order to change the spatiotemporal tuning of this sensor Vqua and
Voff values have to be adjusted properly. Next, we provide biases of the Hassenstein-Reichardt
receiver chip. In contrast to Adelson-Bergen and Barlow-Levick, this sensor employs four-quadrant
multipliers to obtain a nonlinearity that is required for motion computation. Similar to the Adelson-
Bergen receiver chip, the spatiotemporal tuning can be changed by altering the Vqua and Voff biases.
Lastly, we provide the Barlow-Levick receiver chip biases. This chip is also a spatiotemporally tuned
motion sensor and it can be tuned for frequency by finding the right Vqua and Voff biases. Here we
provided one such set of biases that helps the system yield a reliable motion output.
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B.1 Sender chip biases

Chip name: ABsndr3

• Vthrpos = 1.112V

• Vthrneg = 1.088V

• Vfwrbias = 2.5V

• Vleakpos = 4.8V

• Vleakneg = 4.8V

• Vadapt = 0.126

• Vprbias = 3.51V

• Vdiffbias = 0.354V

• Vwell = 1.516V

• Vlref = 2V

• Vfollbias = 0.788V

• Vlbias = 0.546V

• Vpub = 3.57V

• Vrpd = 5V

• Vdpd = 1.080V

• Vsyncpd = 0.792V
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B.2 Adelson-Bergen receiver chip biases

Chip name: ABmrcvr3

• Voff2 = 0.281V

• Voff1 = 0.246V

• Vsyncpd = 0.803V

• PIXACKPU = 3.81V

• Vqua1 = 4.11V

• Vqua2 = 4.17V

• Vcasp = 3.34V

• ACKorPU = 3.99V

• ACKPd = 1.085V

• Vfollbias = 0.786V
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B.3 Hassenstein-Reichardt receiver chip biases

Chip name: Reichardt-rcvr2

• Voff2 = 0.218V

• Voff1 = 0.219V

• Vsyncpd = 0.790V

• PIXACKPU = 3.98V

• Vqua1 = 4.13V

• Vqua2 = 4.18V

• Vrefpos = 4.29V

• Vrefneg = 4.25

• ACKorPU = 3.99V

• ACKPd = 1.085V

• Vfollbias = 0.787V

• Vlref = 1.916

• Vbias = 4.3
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B.4 Barlow-Levick receiver chip biases

Chip name: BarlowLevick-rcvr

• Voff2 = 0.259V

• Voff1 = 0.218V

• Vsyncpd = 0.790V

• PIXACKPU = 3.72V

• Vqua1 = 4.13V

• Vqua2 = 4.18V

• Vcasp = 3.5V

• ACKorPU = 3.98V

• ACKPd = 1.086V

• Vfollbias = 0.787V

• Vlref = 2V

• Vcompref = 2.5V


