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Abstract

One of the requirements of enabling a robot to see in 3D is to move its gaze to match the target.
Vergence is the disconjugate horizontal rotation of the cameras to move their gaze over the target.
Tracking is the conjugate rotation. The di�erence in the two images captured by stereoscopic cam-
eras (disparity), is a su�cient measure to accomplish both of these tasks. We reviewed studies of
how cat visual cortex measures disparity, combined this disparity-energy model with neurophysio-
logical models of vergence control, and developed a system which also controls horizontal tracking.
Experiments con�rm the operation of the system with software and inexpensive custom hardware.
An architecture is presented for the implementation of this project in analog VLSI hardware, and
will show a high degree of parallelism, low power consumption, real-time operation, �exibility and
scalability. We discuss how to compare this vision system with others.
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Chapter 1

INTRODUCTION

This thesis is concerned with arti�cial stereoscopic 3D vision and its application to mobile robotics.
An analysis of biological vision systems is made and the knowledge obtained therefrom adapted for
use in a system which controls the position of two cameras to center a target in both �elds of view.

1.1 Motivation
When one considers the many senses available to humans and other primates, it is clear that vision is
the most useful and thus most important for navigation and identi�cation of objects (food, enemies,
mates, obstacles, etc.) in a complex environment. It has been argued that the ability to see and
comprehend the environment in its full three dimensions, combined with the dexterity implicit in
tree-dwelling species, has led to the current cognitive ability of humans and other primates (Pinker,
1997). It has also been shown that in primates more of the brain is devoted to vision than to any
other sensory system (Zigmond et al., 1999, p. 821). Therefore when examining what are the most
promising and potentially useful senses with which to equip a robot, vision is one of the �rst that
comes to mind. Not surprisingly, however, it has proven to be one of the most di�cult.

It hardly seems necessary to illustrate that a properly functioning vision system is highly com-
plex. Additionally, its completely integrated and transparent nature makes it di�cult for us to
analyze its various working components. It is therefore appropriate to guide the reader through
a preliminary analysis to exemplify the di�culty and depth of the task which evolution has so
expertly solved.

The primary purpose of vision is to enable the subject (a.k.a. "agent", "person", etc.) to be
aware of the objects around it in a manner suitable for physical survival, navigation, and manip-
ulation. In general this means the vision system should reveal large domain-de�ning structures,
such as �oors, walls, mountains, and open space, as well as smaller and potentially more important
features such as predators, prey, fallen logs, holes, stairs, and in the case of robots, mission-critical
objects such as radioactive waste or rock samples. In addition, the vision system often provides
information about the three dimensional structure of the scene, especially in predatory species. The
way a biological vision system �nds these things is by using various types of static and dynamic
information (cues) in the scene itself: lines and edges, brightness, texture, blurriness, binocular
disparity (the di�erence in the two images due to the slightly di�erent vantage points of the two
eyes), and motion-parallax (closer objects appear to move more than distant objects). The vision
system also uses non-visual cues such as the angle and motion of the body, head, and eyes, accom-
modation (focus control), and convergence (angle of the eyes toward each other) as inputs to its
computational (perceptual) engine (Palmer, 1999). Higher level functions such as object recogni-
tion, face identi�cation, pattern recognition, matching, etc., are not addressed here; this study is
only concerned with what is known as early vision � that part of the visual computation process
that is responsible for "identity-less" processing of visual information (Kandel, 1995).

Natural species which see have evolved varying degrees of three dimensional vision. All verte-
brates perceive a visual �eld from each of two eyes (Sciencenet.org, 2000). The degree with which
these �elds overlap determines the ability of the species to see three dimensionally. Predatory
species with eyes side-by-side in the front of the head tend to have visual �elds which overlap
more than those of prey species which tend to have eyes on the sides of the head. This shows
that predators generally have better three dimensional vision than prey (Sciencenet.org, 2000;
Encyclopedia Britannica Online, 2000). Cetaceans (whales and dolphins) and bats, while unable to
see three dimensionally either due to the positions of their eyes or the darkness of their environment,
use sonar to perceive depth in their environment to �nd their prey. From this we may conclude
that the ability to identify suitable objects for prey or examination, the ability to move in the en-
vironment quickly and with agility, the ability to manipulate the prey once caught, and the ability
of the predator to avoid becoming prey to a larger and more dangerous animal (or environment),
requires the ability to perceive the environment in three dimensions.

1.2 Seeing in the Third Dimension

Three dimensional perception is accomplished via a multitude of cues which come from the physical
state of the seer (accommodation and vergence) as well as the content of the scene (e.g., disparity,
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motion, etc.). Some of these cues are also used as inputs to the vergence control system: Con-
vergence, or equivalently vergence, is the control of the eyes such that the intersection of each of
their optical axes occurs at an appropriate place in front of the eyes, usually at the surface or
an edge of the object under consideration. Its control is not only the result of the processing
of visual cues, but also an input to the perception of the resulting image depth. Accommoda-
tion is the e�ort the eyes make to keep the image focused on the retina by changing the shape
of the lens, and results directly in the sharpness of the image. This is also both an output from
an early control system and an input to perception. Binocular disparity is the di�erence in the
image which is created on the retina due to the di�erent vantage point of each eye. It is the
result of the image depth and of the eyes' vergence. In subjects with eyes which are displaced
horizontally, this disparity is known as horizontal disparity, (as opposed to vertical disparity),
and is the most important element for perceiving depth. Disparity alone is also known to pro-
vide su�cient information for both depth perception and vergence control (Stevenson et al., 1999;
Marefat et al., 1997b; Qian and Zhu, 1997; Ohzawa et al., 1996; Hansen and Sommer, 1996;
Mallot et al., 1996; Sanger, 1988). Proximal vergence is the set of cognitive (�high level�) cues
such as perspective, the appearance of parallel lines converging to a single point as their distance
from the viewer increases, which give the impression of depth.

These cues � binocular disparity, accommodation, vergence, and proximal vergence � are used
as inputs to the vergence system (Palmer, 1999, pp.203-209) (Zigmond et al., 1999, p.1007). In
primates, disparity is the primary input to the vergence control system (Mallot et al., 1996; Zigmond
et al., 1999; Cova and Galiana, 1994) and is the only input to the control system in this project.
The �rst three cues are highly coupled; changes in one will invoke appropriate changes in the others
so that all three cues are congruent (Jiang, 1996). Since these three cues are coupled between the
eyes, the failure of one eye will hamper the cues' utility.

There are dynamic cues as well, which are the motion of the scene and the known motion of the
subject, and are available from each eye individually (these are known as monocular cues). This
type of information can be attained by a single eye and is thus valuable for prey species which
have non-overlapping �elds of view as well as from a fault-tolerance perspective: losing an eye does
not signi�cantly a�ect the ability to perceive motion cues. Visual phenomena such as occlusion
(one object hiding behind another object), motion parallax (closer objects appearing to move more
than distant objects), and focus-of-expansion and axis-of-rotation (motion vectors in the visual �eld
indicating the motion of the subject) are also considered major cues to motion. In addition to these
cues from the early vision system, the computation of three dimensional structure is driven by cues
from higher vision processes (Palmer, 1999, Chap. 5, pp. 504-511). Some of the cues in higher
vision are object scaling, relative position, and known identity of objects. These cues will not be
further addressed.

1.3 Background

The approach toward image analysis and arti�cial vision which has been used for approximately
the past 30 years is in some ways similar to how "arti�cial intelligence" (AI) has been approached:
the researcher examines a problem, �nds some way to abstract the data and reduce the amount of
information required to solve the problem (modeling), and proposes an elegant and mathematically
"correct" solution to the problem. Unfortunately for both vision and AI, this historically has tended
toward solutions that are "brittle" � that is, their problem-solving ability degrades or fails entirely
with even small changes in the environment for which they are not prepared or for which they were
not designed.

More recent approaches have attacked the problem from an angle which more readily accepts
imperfect sensors and noisy data, and which accepts the impracticality of attempting to model
the world in detail (Mead, 1989; Brooks, 1986). Brooks outlines an approach which he calls "the
subsumption architecture" wherein a robot's behavior is composed of layers of parallel behaviors,
possibly overlapping or redundant, each of which acts in a direct, predictable, and reactive manner
to external stimuli or to outputs from other modules. Pinker (1997) corroborates this design
methodology by theorizing that various computational "modules" comprise the human brain and
result in complex human behavior. Needless to say, we are nowhere near mimicking mammalian
(nor even insect) behavior in robots, but it is encouraging to �nd a system of robotic design,
a homologue of which has been found in biology. Brooks' robots rely on the layers of parallel
behaviors to produce complex overall behavior rather than being explicitly encoded with a complex
global control system. This is attractive because it allows the designer to focus on individual
simple behaviors without being bogged down by trying to understand all the complexities of a
normal sense!model!plan!execute type of control system and because these architectures are
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more robust in unknown or unpredictable environments. The subsumption architecture supports
the use of vision as a primary sensory modality for robots, rather than sonar (another popular
means of sensing the environment), because of its vastly higher information content. In keeping
with this method of robot design, therefore, it seems reasonable to approach robotic vision from a
bottom-up perspective. This project was performed with the subsumption architecture in mind and
implements two behaviors, vergence control and horizontal tracking, in a parallel and independent
manner. The strategy is based on direct sensory input using population decoding to control the
position of the cameras. Further discussions in Chapter 7 about its implementation in hardware will
support this design style in analog VLSI circuits and encourage its use in real-time mobile robots.

One of the �rst and most geometrically obvious ways of perceiving the three-dimensional envi-
ronment involves analyzing two images which come from two di�erent cameras and �nding salient
points in the images which correspond with each other. By applying geometry and using known
constants such as the distance and angle between the two cameras, the cameras' focal length, and
the resolution and size of the image sensor, the matched points can be given an X (left-right), Y
(up-down), and Z (in-out) value. Thus, a feature in the scene which appears in both cameras is
given real-world Cartesian coordinates. These can then be fed to higher-level processing elements,
such as to control the robot's motor functions.

The main problem with this approach is that signi�cant processing needs to be done to the
images prior to stereo reconstruction to extract the salient features. In an image with any real-
world complexity this problem is quite di�cult to solve and the type of solution may not apply
to the speci�c image; the types of analyses described, for instance, in Haralick and Shapiro (1992)
often assume that some type of function f(x; y; :::) can be mapped to the image, such as lines or 3D
contours. This technique in e�ect requires some degree of image "understanding", interpretation, or
assumption prior to doing the stereo computation. In well constrained environments this method is
appropriate, since the range of situations in which the agent may �nd itself is quite limited. A recent
example of a well constrained environment may be found in the work of Kolesnik and Barato� (2000),
who use robots to navigate sewer lines in search of cracks in the concrete. The general lack of
robustness often found with the image/feature analysis approach is o�set by the in�exibility of the
environment, and the costs associated with designing such a system are commensurate with the
variety of environments in which it can serve. Another possible advantage of direct image analysis
techniques is that if the correspondence (point-matching) problem is adequately solved for greatly
dissimilar images (images with objects very close to the cameras relative to the cameras' separation
distance), any optical or perspective-induced distortion can be overcome, since it is accounted for in
the geometrical modeling of the system. This may be used to overcome places in the image where
stereofusion is not possible, such as in regions with a high degree of vertical disparity (Woods et
al., 1993).

Haralick and Shapiro (1992) describe many low-level mathematical operators for dealing with
images prior to higher level analysis. These include (sampling from the text's table of contents):
thresholding and segmentation; region analysis with extremal points, spatial moments, and signa-
ture analysis; statistical pattern recognition using various rules and with neural networks; binary
morphology such as dilation, erosion, opening, closing, and set theory to describe them; neighbor-
hood operators such as region growing and shrinking and convolution and correlation; conditioning
and labeling with various types of �lters and zero-crossing detectors; facet models with gradient
and derivative analyses; texture descriptions; image segmentation; and arc extraction including the
Hough transform technique used by Kolesnik and Barato� (2000). These techniques have a distinct
�avor of mathematical formalism with seemingly little regard to examining how nature has solved
the vision problem, apparently many times over (Pinker, 1997, pp.211�284). (In all fairness, the
text does claim a biological motivation for Gaussian noise smoothing and edge detection, however
this is in general contrast to the rest of the book.) A recent application of this type of image analysis
can be found in the work of Knight and Reid (2000). They use a point-matching technique and
construct a depth-map of the scene to calibrate a robot's stereoscopic cameras for further vision-
based modeling of the o�ce environment. Their technique is based on several matrix transforms
and geometrical theorems.

Another major class of techniques which do not depend on trying to �t the image to a model
or function is one which instead uses only local image information for depth perception. These are
known as correspondence-less algorithms. It is assumed that a 3D scene will project nearly identical
images into two stereoscopic cameras if the distance to the scene is large compared to the distance
between the two cameras. The two images will di�er in horizontal position by a slight amount
depending on the distance from the cameras and the horizontal distance between the cameras,
resulting in what is known as horizontal disparity or stereoscopic disparity. Whereas the point-
matching techniques implicitly or explicitly attempt to �nd a model to describe the image and to
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identify which point in one image matches which point in the other image, the correspondence-less
techniques (disparity-measurement techniques speci�cally) generate only a scalar or set of scalars
which indicate the amount of horizontal shift in the two images or parts thereof, with no regard to
speci�c points or features in the images. It is this loss of global information which in general prevents
the disparity techniques from detecting large amounts of disparity; disparities from extremely close
or extremely far objects can be too great to be useful.

Disparity is therefore most useful for small ranges of depth around the horopter, which is the
locus of points that project to the same place in both retinas or imaging planes and which therefore
produce zero disparity. The horopter is thus a curved surface in front of both cameras. The region in
which points in front of and behind the horopter which are interpreted by the vision system as single
points, rather than distinct points in the left and right visual �elds, is known as Panum's fusional
area. We use the fact that disparity is only a relative distance between the horopter and the target
to verge the cameras. Note that any use of the word disparity here is intended as the horizontal
shift between the two images. There is also vertical disparity which is caused by a misalignment
in the elevation (up-down angle) of the two eyes or by the perspective-induced di�erences in the
apparent height of an object (Woods et al., 1993). The measurement and use of horizontal disparity
has been studied extensively; it is reviewed in more detail in Chapter 2.

1.4 Previous Work
The past several decades have seen an enormous amount of research into computer and robotic
vision. The following summarizes some work relevant to this thesis.

Sanger (1988) and Qian and Zhu (1997) both provide a good mathematical basis for the disparity
techniques used in this project. They introduce the notion that complex phase in the frequency
domain can be computed at various points in the image with Gabor �lters. Complex phase in the
frequency domain corresponds directly to disparity in the spatial domain. This directly �ts the
biological disparity energy model espoused by Ohzawa et al. (1996; 1990; 1990; 1986). Sanger and
Qian both show depth maps calculated from random-dot stereograms as well as real images using
this technique. Chen et al. (1994) elaborate on the notion that a system of Gabor �lters with a
range of spatial widths and tunings can be used to compute depth. Hansen and Sommer (1996) use
a constant-size Gabor �lter applied iteratively over a subsampled image in a coarse-to-�ne manner.
They use this information to control the vergence of a pair of cameras and to estimate depth to
a target. Cozzi et al. (1997) compare the performance of phase-measuring �lters introduced by
Sanger and Fleet, which are all based on the Gabor �lter.

Ohzawa et al. have written extensively on the neurological basis for stereoscopic vision in cats.
They support the concept of phase-based (as opposed to position-based) disparity detectors in the
simple cells of a cat's visual cortex. These cells correspond to various receptive �eld (�RF�) widths
and are tuned for various disparities; simple cells tuned for stereoscopic disparity respond maximally
to a particular disparity at a particular spatial frequency. This is the architectural basis for the
disparity model used in this project.

Batista et al. (2000; 1997; 1996) and Araujo et al. (1996) implement real-time image tracking
and vergence control with a multi-degree-of-freedom robotic camera head. By computing optical
�ow and using cross-correlation (a popular way to measure disparity) to determine image disparity,
they are able to control the angles of the head and eyes. Their control scheme consists of an image
capture board, various types of "purposive" behaviors, a state machine, computational modules,
and a detailed model of the head mechanics, all running on a PC-based system. They use various
�lters and matrix transforms to predict motion and to calculate the correct angles for the eyes and
head. Their approach is very much from a "control-theory" viewpoint, where the motion of the
robot is directly based on computing a trajectory and using inverse-kinematics to �gure out the
angles of the joints.

The above discussion leads us to consider the control of the vergence angle between the two eyes.
Other than the depth of the objects in the scene, the vergence angle is the only other parameter
which determines image disparity. The vergence angle and any remaining disparities can be used
as an estimate of objects' depths in the scene, and thus vergence control is useful and important.
This project controls the vergence angle and estimates distance to the target.

Alvarez et al. (1999; 1998) and Semmlow et al. (1998) have studied the dynamics of human
ocular vergence and have supported the theory that vergence is a two-step process: the �rst step
is triggered by an onset of image disparity and produces one or two saccade-like (fast) motions
to minimize the disparity. The maximum speed of the response is determined by the amount of
disparity. If the �rst movement does not bring the vergence to within approximately 80% of its
�nal value then another fast movement is generated. During these movements visual feedback is
not used, hence its controller most resembles an open-loop controller. After the initial one or two
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movements a second-order visual-feedback control system is invoked which adapts the vergence to
small (slow) changes in the disparity, and is responsible for the extremely accurate positioning of
the eyes to achieve image convergence (minimization of disparity). They have also shown that
the control of horizontal tracking (smooth pursuit) is separate from that of the vergence control,
the former being more precise for slowly moving targets. Hung et al. (1997) have shown that
convergence movements are faster than divergence movements for the same (symmetric) stimuli.
Howard et al. (1997) discuss the amplitude and phase (dynamics) of the vertical vergence response
to varying stimuli.

Popple et al. (1998) have shown that horizontal vergence response in humans is a�ected by
the area of the image where the disparity exists. They show that the vergence response does not
necessarily react to the disparity of the entire visual �eld, nor to a target presented in that �eld,
nor to disparities simply within the fovea, but instead integrates over a region of at least 6° of visual
�eld to determine the vergence response. Stevenson et al. (1999) have shown that foveal disparity
targets are given preference, however, in inducing a vergence response, compared to targets farther
out in the visual �eld, and have indicated that the vergence response is a result of a weighted
integration over the visual �eld, which supports Popple et al. They also con�rm that a larger
disparity target is more e�ective in driving the vergence response than a smaller target. Mallot et
al. (1996) have shown that the vergence response is initiated by the correlation of the left and right
images, in�uenced by the density of the image (they used random-dot stereograms), and that the
disparity-detection system averages multiple disparities in a visual location so that only one depth
is perceived.

The dual-mode vergence behavior has motivated some researchers to a develop a dual-mode
model. Cova and Galiana (1994; 1995) have developed a neural model to account for accommodation
(focus) and vergence control, with a neurophysiological basis. Their model incorporates both the fast
and slow responses by eliminating a negative-feedback connection during the fast response. Patel et
al. (1997) also provide a physiologically-based neural model of vergence control, but instead of using
a switching mechanism to elicit the slow and fast responses, they rely on inherent nonlinearities
in the neural elements to provide the behavior. Hung (1998) provides a Matlab-based model for
fast and slow vergence response, with apparently little attempt to mimic neurobiology. All three
of the above models have been simulated and appear to provide responses similar to the biological
case. In the �rst and third case, the inputs are simply the desired vergence angle. In the second
case the authors provide a block labeled "disparity detectors" which then similarly provides a
desired vergence angle as input to the rest of the system. None of the models provide a means of
measuring disparity or computing the desired vergence angle, but Patel et al. suggest than an array
of disparity-tuned cells provide input to the vergence controller (the "disparity detectors" block).
This part of the model has been adopted to the current project.

Non-biological vergence control models have also been developed. Olson and Potter (1989)
approach the problem from a signal-processing perspective and use a cepstral �lter to calculate
image disparity. The results of the �lter are then used to control the vergence angle in real-
time. Yim and Bovik (1994) subsample the images and use a hierarchical coarse-to-�ne Laplacian
Pyramid scheme with zero-crossing-detectors and sign-correlation to measure disparity and control
the vergence angle. Bernardino and Santos-Victor (1996) use a log-polar function to create a
foveal area in their image (higher resolution in the center than at the edges) to reduce the required
computation and show that using a log-polar representation yields better results for vergence control
than a Cartesian representation, in addition to being faster due to the reduced image size. Marefat
et al. (1997a; 1997b) describe their use of disparity to control the vergence of stereoscopic cameras.
They perform thresholding on the image and use windowing to divide it up for use in the disparity
computation. Piater et al. (1999) use a Cartesian logarithmic subsampling method to create a
foveal region in the center of the image. They then use column-wise stereomatching and parameter
correlation as inputs to a reinforcement learning algorithm. The algorithm determines the best
parameters to use in controlling the vergence of their stereo cameras, and they have shown it to be
superior to human-determined values.

In general the biological models di�er from the non-biological models in the extent to which
the computations carried out are possible and feasible in a neural system. The biological control
methods and input selection are typically a �rst or second order controller with population-encoded
inputs, and may use some nonlinearity, such as thresholding. The non-biological models may use
various types of signals-and-systems approaches that have been developed over the years for other
control systems, and often involve �lters and matrix operations that are typically not associated
with biological neural processing. The disparity computation has been shown rather conclusively
in Ohzawa et al. (1997) to be represented as an energy in a cat visual cortex, rather than being
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decoded trigonometrically through some type of �arctangent� cell, as has been used in Hansen and
Sommer (1996) and Marefat et al. (1997a). Also, the non-biological models process the images in
ways that have not been shown to occur in neurobiology. Speci�cally, segmentation and binarization
of an image in Marefat et al. do not appear to have counterparts in neurobiology. Conversely, the
biological models tend to use the entire �eld of view, which may be an ine�cient use of resources.

So far the previous work that has been covered has used software to compute disparity and
control the vergence angle or to do tracking. There have been e�orts to perform these tasks in
hardware as well. We review some of them here. Mahowald and Delbrück (1989) developed a chip
capable of detecting disparity via two one-dimensional detectors arranged on a single chip. They
developed a static and a dynamic version of their chip. Erten and Goodman (1996) present an analog
VLSI chip which performs correlation between two images of a stereo pair and outputs a disparity
map. Asai et al. (1999) present a biologically-inspired analog MOS circuit which tracks objects
and compensates for head/eye movement. Etienne-Cummings et al. (1999) describe a mixed-signal
VLSI imaging chip which can perform arbitrary �ltering with 3x3, 5x5, 7x7, 9x9, and 11x11 kernels.
While this chip is not designed speci�cally for stereoscopic imaging, it is reasonable to extend the
concept they present to the stereo domain. Shi et al. (2000; 1999) introduce a VLSI architecture
for implementing Gabor �lters in real-time hardware and show how these can be used for tracking
and vergence control.

1.5 Project Goals

This project aims to combine the research on biological disparity computation with a model for
vergence control and to add a novel disparity-energy driven horizontal tracking mechanism. Hor-
izontal tracking is the ability of the eyes to move horizontally such that the object in question
remains centered in both the left and right image. The system presented here is driven only by
visual information, without knowledge or higher-level symbolic description of the scene. In general,
this is di�erent from the approaches that have classically been taken in computer vision; it is our
conviction that by mimicking the architecture and computational approach found in the mammalian
visual cortex for early-vision, a system that is as robust, �exible, and low powered will be possible
in the long term. It appears the disparity-energy techniques discussed by Ohzawa et al. (1997)
and Qian and Zhu (1997) have not been directly input to a vergence control system, nor does it
appear that the vergence control models here have been driven by any type of disparity-energy
measurement system. This project therefore aims to combine the two. This project concerns itself
with using the disparity-energy from two images from a pair of stereoscopically-mounted cameras
("eyes") and producing the appropriate eye movements to achieve both convergence and horizontal
tracking. Additionally, in this project horizontal tracking has been implemented in a way that does
not necessarily appear supported by biological research, but which o�ers a simple way to track
objects of interest. By combining these three elements - disparity measurement, vergence control,
and horizontal tracking, it is hoped that a useful biologically-inspired vision system can be created.

It is di�cult to compare this research with other vision-related research, so at this point we
cannot argue whether this particular implementation is better in any measurable degree than other
systems (Hansen and Sommer, 1996; Marefat et al., 1997b), but we believe it to be a step in the
right direction. In keeping with a biological motivation for vergence control, this system avoid-
s standard computer vision techniques such as modeling its environment, generating trajectories,
computing Hough transforms, performing statistical analyses, or attempting point matching (Har-
alick and Shapiro, 1992; Knight and Reid, 2000; Kolesnik and Barato�, 2000). Rather, the system
emulates current neurobiological models by detecting and exploiting image disparity and employ-
ing a high degree of parallelism among locally connected simple mathematical operators, including
summations, center-surround receptive �elds (RF s), and winner-take-all networks with nonlinear
activation functions (thresholding) (Lande, 1998; Mead, 1989; Kandel et al., 1995). Although this
project is software based, it is developed with the hope that it will be expanded to a full hardware-
based implementation, thereby achieving the goal of a robust fully parallel real-time low-powered
vision component for use in a mobile robot.

From an algorithmic perspective, this research does not set out to improve upon any speci�c
algorithm or means of computation. Therefore a quantitative comparison of accuracy, repeatabil-
ity, etc., is not appropriate. From a performance perspective, while the algorithms and methods
presented here are carried out in software, the ultimate goal of this research is to create hardware
that accomplishes the same task. The software therefore is not optimized for a serial computer,
but rather it simulates the actions of a highly parallel hardware system, and so it does not com-
pare easily or fairly with other software-based real-time vision systems (Batista et al. (2000; 1997;
1996)). Similarly, the accuracy and error measurements shown in Chapter 6 are re�ective of the
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low-cost hardware platform we use here, whereas Batista et al., for example, use an admittedly very
expensive and precise mechanical setup. Probably the most appropriate way to compare this work
is against other hardware implementations of the same task, however this author has not found any
other purely-hardware implementations of vergence and tracking.

Other hardware-based disparity-measurement systems have not been based on disparity-energy
(Higgins and Koch, 2000) or are limited to a single dimension and have not set out to control camera
movement (Mahowald and Delbrück, 1989). Some are two dimensional (Erten and Goodman, 1996)
and are used to control camera movement (Lu and Shi, 2000), but still perform critical computation
o�-chip in a serial computer (Lu and Shi), and still do not use disparity energy as their metric.
As far as we know this is the �rst proposal of a multichip, layered, disparity-energy-based, analog,
continuous-time vergence and tracking controller.

Some other points of comparison which may be considered against other systems that ultimately
perform the same task (Hansen and Sommer (1996), Batista et al. (2000; 1997; 1996)) are those of
power consumption, scalability, and robustness. The power consumption of a multichip system has
been shown by Higgins and Koch (2000) to be vastly superior (9.2mW peak) to that of a software-
based system; the power consumption of the processor cooling fan alone for an Intel Pentium III
(Intel Corp, 2000, p. 92) processor is shown to be approximately 1.2W. The layered nature of the
system presented in Chapter 7 allows for computation to be added or rearranged as needed, such as
by adding more spatial �ltering, more disparity tuning, motion computation, di�erent controllers,
etc., with only linear increases in complexity and power consumption, and no noticeable decrease
in system speed. Increasing the computational ability of the software-based systems would either
slow down the system or require more processors and much more complex software to keep the
computation in constant time. The proposed hardware system will also not be as susceptible to
things such as software crashes, power glitches, etc. The ability to add more computation also
increases the system's ability to perceive depth in arbitrary images, rather than the toy images
used in this software project and by others such as Shi.
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Chapter 2

DISPARITY MEASUREMENT

Stereoscopic disparity is the di�erence in the two images of a scene caused by the spatial sep-
aration of two horizontally spaced cameras. It is assumed that for normal viewing conditions
the di�erence is simply a horizontal shift, representable as a phase o�set in the frequency do-
main, and true di�erences in perspective caused by the di�erent camera vantage points are ig-
nored or considered negligible. This section describes the use of quadrature-phase Gabor �l-
ters for disparity measurement, as proposed by Ohzawa et al. (1997); Qian and Zhu (1997);
Sanger (1988). Cell will be used interchangeably with �lter where the context is clear.

2.1 Gabor Filters and Disparity-Tuned Complex Cells

Let us begin by considering two one-dimensional images and the following two Gabor functions:

fl;1 (x) = e
�x

2

2�2 cos (!0x+ �l) (2.1)

fr;1 (x) = e
�x

2

2�2 cos (!0x+ �r) (2.2)

where � is the width of a Gaussian envelope and !0 and � are the spatial frequency in cycles/pixel
and phase, respectively, of a cosine, for left and r ight �lters. If the functions are centered at some
point x0 in their respective images, then a convolution of the image with the function will indicate
the amount of image energy at the phase-shifted location of the sinusoid, at the frequency !0, within
the Gaussian. In other words, the output of the convolution is the value at one location along the
frequency axis of the even (real) part of a mini-Fourier transform, performed at the �lter location,
where the transform is most sensitive to �-shifted cosines of frequency !0. Since the phases for the
left and right cosines are di�erent, each �lter can respond speci�cally to a particular shift in the
image. By using �lters with a phase di�erence of �� = �l � �r and combining their outputs, the
presence of a certain disparity between left and right images can be checked for. Thus, the response
of a simple cell is

rsimple;1 (x0) =

Z +1

�1

[Il(x) � fl;1(x0 � x) + Ir(x) � fr;1(x0 � x)]dx (2.3)

where I(x) is the intensity at location x (Qian and Zhu, 1997).
A complex cell is a cell which combines the squared outputs of two pairs of simple cells in

quadrature phase. By using �lters in quadrature phase, the output becomes independent of stimulus
contrast and mostly independent of absolute phase, yielding a disparity energy. This comes from
the trigonometric identity sin2 x+cos2 x = 1. That is, the second cell of the pair uses a sine function
instead of a cosine to compute its output. The sine function in e�ect is the odd (imaginary) part
of a Fourier transform at the �lter location:

fl;2 (x) = e
�x

2

2�2 sin (!0x+ �l) (2.4)

fr;2 (x) = e
�x

2

2�2 sin (!0x+ �r) (2.5)

The response of complex cells in a cat's visual cortex has been found by Ohzawa et al. (1997) to
follow this mathematical description quite well. We can de�ne rsimple;2 similarly to rsimple;1 by
using fl;2 and fr;2. A major function of a complex cell is that it responds positively to stimuli in
which both the left and right eye have the same contrast sign, but has a negative (antagonistic)
response to stimuli in which the left and right eyes are receiving oppositely-contrasted stimuli.
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Figure 2.1. Block diagram of complex cell tuned for zero disparity(�l = �r = 0). Blocks on the

left represent simple cell Gabor �lters, with a nonlinear squaring function.

Although this project does not make use of the following approximation explicitly, the response of
a complex cell (the disparity energy) is:

rcomplex = (rsimple;1)
2 + (rsimple;2)

2
(2.6)

� c2
���eI (!0)���2 cos2

�
��

2
�
!0D

2

�
(2.7)

where c � 4
R
1

0
d!

��� efl (!)��� is a constant and
���eI (!0)���2 is the Fourier power of the image under the

RF (receptive �eld) at the preferred frequency !0 (Qian and Zhu, 1997). Fig. 2.1 diagrams how
the complex cell computes its response.

The preferred disparity of the complex cell is assumed to be small compared to the width of the
RF, and is de�ned as the di�erence in phase of its constituent left and right simple cells, divided
by their frequency:

Dpref �
��

!0
(2.8)

which carries units of linear distance (in this project, the units are pixels). A simple cell, and

therefore a complex cell, cannot detect nor be tuned for any disparity outside the range
h
�

�
!0
; �
!0

i
,

although Cozzi et al. (1997) tell us the useful range is actually approximately
h
�

2�
3!0

; 2�
3!0

i
. These

ranges can perhaps be better interpreted if expressed as
�
�
�
2
; �
2

�
and

�
�
�
3
; �
3

�
, respectively, where

� = 2�
!0

is the wavelength of the sinusoids in pixels. If a complex cell is tuned for disparities outside

the available range, then its maximum output will occur � radians away from the correct location.
In other words, if the stimuli fall outside the middle cycle of the sinusoid under the RF, at locations
less than ��

2
or greater than �

2
; then a problem known as phase-aliasing occurs, since the periodic

nature of the sinusoid makes disparity of the stimuli ambiguous. Phase aliasing is the phenomenon
caused by trying to map an in�nite range of disparity inputs to a �nite range of output energies.
Since each output of the cell can be interpreted as being caused by a legal disparity, when a disparity
is presented that is beyond the limits of the cell, the output energy must be ambiguous with a legal
disparity.

How are the �lter parameters, !0; �; and � determined? For simplicity, we choose parameters
which will allow the same �lter shape for all spatial scales. First we choose � to be proportional to
the entire width of the �lter, typically anywhere between 7 and 50 pixels:

� =
kW

2�
(2.9)

where k is a constant and W is the entire width of the �lter. A value of k = 1 allows for a �nice�
Gaussian curve over the width of the �lter with wavelength �, so that the number of cycles of the



25

−50 −40 −30 −20 −10 0 10 20 30 40 50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X location, pixels

F
ilt

er
 a

m
pl

itu
de

One−dimensional Gabor filters, tuned for 45 pixels

Left Even 
Left Odd  
Right Even
Right Odd 

Figure 2.2. Even and odd Gabor �lters with k = 1, t = 1
3
, W = 99, Dpref = 45 pixels, yielding

�� = 8:65 rad, � = 32:67 pixels/cycle, !0 = 0:19 cycles/pixel, and � = 15:76.

sinusoids will always be the same for any given Gaussian. The pixels referred to here are the image
pixels after appropriate data-reduction (subsampling) of the original CCD image. In the hardware
architecture which will be discussed in Chapter 7, they refer to the adaptive photocell's output.

Next we choose the wavelength � to be proportional to � by a factor of t, and thus also propor-
tional to W :

� = t� =
tkW

2�
(2.10)

so that

!0 = 2�
tkW

(2.11)

With k = 1 and t = 1
3
, the two Gabor �lters in Fig. 2.2 are generated.

Fig. 2.3 shows �ve di�erent complex cells, each tuned for a di�erent disparity. Notice that the
complex cells respond sharply to di�erences in disparity (the purpose of the cell), but they respond
rather weakly to the overall position of the stimuli, i.e., their absolute horizontal position (phase)
within the RF. Qian (1997) shows how this is a characteristic and desirable feature of a complex
cell, which is not possible using only disparity-tuned simple cells. Ohzawa et al. (1997) con�rm this
behavior in the cat visual cortex.

2.2 Disparity-Tuned Filter Bank

Our �rst attempt at using disparity-tuned cells to measure disparity was with a single cell tuned for
zero disparity, located at each spatial position. The vergence controller simply tried to maximize
the energy reported by the cells using a hill-climbing algorithm. Chapter 4 talks about this in
greater depth; the introduction to disparity already presented provides enough background for this
type of vergence control.

After the zero-disparity-tuned cell method was tried and found inadequate, a more �biologically
plausible� architecture was developed using a bank of disparity-tuned cells covering a range of
spatial widths and disparity-tunings, to be used at each spatial location, as suggested by Ohzawa et
al. (1996) and Qian (1994). We will now discuss several issues pertaining to this implementation.

We determined that the �lter bank at each location should provide su�cient information about
the unique depth at that location to drive the vergence controller. This means that either the bank
should report one single disparity to the controller, or that the bank should provide some type of
average response across the various widths and tunings. This is known as "population decoding",
since the information required is "encoded" in the population of cells ("neurons"). Qian (1994) was
the �rst to show that this method can be used to compute a depth map. Fig. 2.4 shows a map
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Figure 2.3. Simple and complex cell responses for a range of disparity tunings. The disparities

for which the �lters were tuned are -9, -5, 0, 5, and 9 pixels, from left to right column. The top two

rows show the simple cells' Gabor �lters. The third row shows the complex cells' responses to every

stimulus position under the cells' RFs. The cell's sensitivity to disparity (upper-left-to-lower-right

diagonal) and their insensitivity to stimulus average horizontal position (lower-left-to-upper-right

diagonal) is seen clearly in the intensity of the plot. The fourth row shows the response pro�le of

each cell to a range of disparities with the average position of the two stimuli centered under the

RF of each cell, which is the same as the upper-left-to-lower-right diagonal of each corresponding

third row plot. In both the third and the fourth rows the location and magnitude of the pro�le peak

changes with tuning, as do the sidelobes. At the -9 and +9 tunings the sidelobes are almost as large

as the peak and make the location of the peak ambiguous. This illustrates the range of tunings for a

cell of a particular width and t value. The stimuli were each a 1-unit high, 1-unit wide impulse. The
parameters for all the �lters were as follows: k = 1, t = 1

3
, W = 59, �� = �2:92;�1:63; 0; 1:63; 2:92

radians, yielding � = 19:33 pixels/cycle, !0 = 0:33 radians/pixel, and � = 9:39. In this case the

limit of disparity tuning � �
!0

= �9:7 which is truncated to �9:
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Figure 2.4. Disparity-tuned �lter bank: Each square represents one complex cell with a particular

spatial width and disparity tuning. As the spatial width increases the number of possible integral

tunings increases, giving the pyramidal shape. Each pixel under the RF for a particular cell width

"consumes" less phase relative to the width of the RF; the narrower cells at the top of the �gure

"consume" more phase for each pixel of tuning. The narrower cells therefore can represent less

"real" disparity, measured in pixels, than the wider cells. The tradeo� is that the smaller cells

respond better to higher spatial frequency (smaller image features). Ideally, each �lter bank exists

at each spatial location.

of the disparity-tuned �lter bank. Each square represents one complex cell in the spatial-width vs.
disparity-tuning space (�RF-Tuning� space) seen in Fig. 2.4. The vertical axis represents spatial

scale: the �lter width, RF size, or 1
!0

of the �lter. The horizontal axis represents the disparity

tuning of the cells. Thus, the cells within a row all have the same spatial width and cover a range of
disparity-tunings allowable for that width, and the cells within a column all have the same disparity
tuning (measured in pixels, not phase), covering a range of spatial widths. Since the cells toward the
top of the map have a smaller RF than those toward the bottom, they also have a smaller range of
allowable disparities, giving the pyramid shape. It turns out that using multiple cells with a range
of RFs is identical to subsampling the image and using cells with a constant-sized RF, as in Hansen
and Sommer (1996). Although using larger RFs in parallel on the same sized image rather than
using single-sized RFs on a progressively smaller (subsampled) image is computationally slower,
this approach is closer to how to biological vision systems e�ect the same task. Any insight gained
through this slower architecture will hopefully be applicable to the hardware implementation ideas
presented in Chapter 7.

It should also be apparent from Fig. 2.4 that there is much redundancy in the larger cells if their
tunings are spaced similarly to those of the smaller cells. That is, the relative phase di�erences
between adjacent cells in the wider RF rows are smaller than those in smaller RF rows, even
though they represent the same number of pixels in disparity. Less cells can be used by spacing
them further apart both in width and in tuning. By choosing a constant phase, or equivalently by
choosing a certain number of tunings per row, we can reduce the amount of computation required
for a given range of RFs. Using a constant phase to space them apart rather than a constant
pixel distance would allow smaller cells to show small disparities while allowing the larger cells to
represent more tunings spaced further apart, while using the same computational resources as the
smaller cells. Unfortunately, for low-spatial-frequency images, this spacing leads to a coarser control
of the cameras since it takes a greater disparity (away from zero) to move the cameras, since they
can only be moved when a non-zero cell responds maximally. This results in the cameras possibly
stabilizing on a vergence which does not reduce the disparity to zero (visible by the experimenter
in the software's GUI, described in Chapter 3), but which is still smaller than the disparity of the
�rst non-zero-tuned cell in either the positive or negative direction. The overall depth estimate,
however, should not be a�ected too much because the average disparity of the image should still be
available from the responses of the cells which are available. If the resulting spacing is too coarse
about the zero tuned cells for a particular row, a decaying log function can be used to space the
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cells an increasing distance from the zero tuning so small near-zero disparities are accounted for,
but computation resources are saved for large disparities where the �ner resolution is not required.
It would not be surprising if similar spacing were found in biological systems.

2.3 Phase Aliasing: Description

Problems arise when the disparity presented to a range of cells is too large for their spatial width.
Fig. 2.5 shows the outputs of a �lterbank to several stimuli disparities. For each row where W
was the minimum required for that range of integral disparity tunings. Each row of subplots is
associated with a particular stimulus width (1,5, and 10 pixels), and each column is associated with
a particular input disparity (0, 2,...,10 pixels). Each subplot represents the same bank of complex
cells (as in Fig. 2.4) ranging in both spatial width and disparity tuning. The value of each grayscale
dot is the value of the RF pro�les seen earlier for its respective cell. The grayscale contrast in each
row of six subplots was normalized against zero and the maximum energy for that row of subplots,
so subplots for a given stimulus width can be compared. The white dots at the right and bottom
of each subplot mark the [row, column] with the overall maximum response, determined as the
maximum of a sum-of-[columns, rows] (not shown) in each [row, column].

In general, the rows with the smaller RF respond less to the wider stimulus, and the wider
RF rows respond more, exhibiting the spatial-frequency-tuning nature of the Gabor �lters. As the
disparity increases, the cells tuned for that disparity are the ones with the maximum response. The
top row of plots gets darker as the disparity increases because the stimuli are approaching the end
of the Gaussian envelope and so the response from the small cells is not strong. The response from
the large cells is weak too, however it is because of the high frequency content of the stimulus rather
than because the stimulus is out of spatial range of the cells.

As the stimuli widths increase (5 and 10 pixels), at large (+8) disparity, although the cells tuned
to +8 in the bottom few rows are responding strongly, the cells at the opposite end of the range
(negative large) within that spatial width are also responding strongly, and rows of narrower-RF
are responding strongly as well, even though those narrower cells cannot possibly represent the
disparities indicated by the larger RF cells. These rogue cells at the sides of the wide-RF rows and
all over the narrow-RF rows represent the side lobes in the RF pro�les of Fig. 2.3. The response of
the small-width rows eventually tapers o� as the stimulus exceeds the bounds of the RF. When the
stimulus has a large low-frequency content, the maximum detectable disparity increases since the
cells which exhibited aliasing with a higher-frequency content are not responding as much. Thus,
the �lter-bank's report of overall disparity is more accurate when the larger RF cells are favored
by a wide stimulus. The maximum disparity input of 10 pixels, however, is still too large for the
widest RF's limit of 9, and the reported disparity is therefore wrong even for the wide stimulus, as
indicated in the bottom-right plot of Fig. 2.5.

The sum-of-columns (which produces the white dot at the bottom of each subplot) has a bias
toward disparities which are shared by all the rows, since its sum contains the most elements, so
the disparity indicated by the bottom-most row jumps around based not only on the true disparity
but also on the spatial width of the stimuli. Similarly, the maximum point in the main part of the
subplots do not necessarily match up with the sum-of-[rows, columns] maximum. The mismatch
between the sum-of-columns maximum and the true disparity illustrates the phase-aliasing problem:
as the disparity increases, the "perceived" disparity follows up to a limit, and then wraps around.
The limit is increased as the width of the stimuli, since only the wider cells can represent those
large disparities and they need the wide stimuli to guarantee their dominance.

Therefore, taking the maximally responding cell with this scheme, as Qian et al. (1997; 1994)
do, whether the maximum comes from the sum-of-columns or from the middle of the map itself,
may not always yield the correct sign of stimulus disparity, much less represent its actual value.
Although narrow-RF rows may alias heavily, the preponderance of correctly-valued and correctly-
signed wide-RF cell responses will in many cases make the sum-of-columns report a correct sign
of disparity, and for reasonably small values of alias-inducing disparity, the sum-of-columns will
still show the correct cell index for the input disparity. At very large stimulus disparities, however,
the sum-of-columns response may exhibit somewhat chaotic behavior, as does the location of the
maximum point in the map. With very large disparities, the e�ects of this aliasing are somewhat
o�set by the fact that the narrow cells respond rather weakly due to the RF tapering o� toward
the edge. Clearly some type of parameter-tweaking or architectural modi�cation must be made to
allow unambiguous disparity responses.
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Figure 2.5. Response of disparity-tuned �lter bank to various disparities and stimulus widths.

A �lter bank located at one spatial point was presented with centered ideal vertical bar stimuli.

Filter parameters were: t = 1
3
, k = 1, with the ranges W = 15, !0 = 1:26, � = 5, � = 2:39,

and Dpref = f�2;�1; :::;+2g pixels to W = 59, !0 = 0:32, � = 19:67, � = 9:39, and Dpref =
f�9;�8; :::;+9g pixels. The stimuli disparity was f0;+2; :::;+10g and their width was f1; 5; 10g
pixels. The mark in the bottom-most row of each subplot indicates the �lter bank's consensus on

what the true disparity is and is compared to the true disparity shown by a black mark under the

subplot. The input disparity of 10 is actually beyond the range of the �lterbank, but is shown

where it would appear. The maximum point in the gray portion of each subplot is marked with an

opposite-contrast dot.
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2.4 Phase Aliasing: Analysis

The source for this aliasing comes from the fact that as the disparity is increased over the RF of the
cells, the cell with maximum response does not always represent the disparity, and the index of the
maximum cell cycles through all the cells. When the response pro�les of the cells are superimposed,
the pro�le with the maximum value at any particular disparity gives the index that is reported in
this scheme, similar to that of Qian and Zhu (1997). For disparities greater than the maximum or
minimum allowable disparity, the index of the maximally responding cell cannot possibly be of a
cell that represents the illegal disparity, so as the disparity is increased beyond the legal limits, the
index of the maximally responding cell cycles around to the opposite cell's index. By changing the
frequency tuning of the cell and limiting the number of cycles of sinusoid which fall under the RF,
the index-cycling behavior can be minimized or eliminated altogether. The major problem with
this scheme, however, is that the cells are no longer as selective for a particular disparity, and lose
disparity selectivity completely when the phase cycling is eliminated.

Figs. 2.6 and 2.7 illustrate the phase-aliasing behavior and the results of modifying �lter pa-
rameters in an attempt to remove it. The top row of Fig. 2.6 shows that as t is increased from 1

3

to 1
0:5

the disparity tuning becomes less sharp and the sidelobes disappear. The bottom row shows
the energy output of a range of cells tuned to �ll the maximum allowable range for their width
(W = 59) and their output energy versus a centered input disparity. The range of the disparity
tuning is shown in the x-axis and the range of the disparity input is shown in the y-axis; note that
the tuning range increases as t increases and the sidelobes appear as diagonal bands that do not
reach across the entire subplot. As the cells' tunings increase from the negative to the positive limit,
the response maximum tends to follow the input disparity, giving the major diagonal response. A
horizontal cross section of the subplots on the bottom row yields the response of the range of cells
for a particular disparity, from which can be extracted the index of the maximally-responding cell.

This maximum cycles from full negative to full positive, as shown in Fig. 2.7. By increasing
t and reducing or eliminating the sidelobes, the number of times the index cycles can be reduced.
Within the range of

�
�
�
2
;+�

2

�
(identical to [-90, +90] degrees), the ordering is sequential (and so

the plot is monotonic), as expected. Outside the range, however, the ordering starts again. The
index-cycling occurs when t < 2. The frequency along the disparity axis of the response pro�le is

governed by (sin!0 + cos!0)
2 = (1 + sin (2!0)) (the frequency doubling is important) where !0 is

such that if t > 1
0:5

or equivalently if t > 2 then one half-cycle of the sinusoid covers the width

of the �lter (according to how t controls !0). Outside �
�
!0
, which are the legal boundaries of the

�lter, the sinusoids start again, and so the index of the maximally-responding �lter also resets.

The major tradeo� with increasing t as required to increase monotonicity in the maximally
responding cell index is that it reduces the cell's selectivity to disparity, thereby degrading the cell's
performance and ability to discriminate among various disparities. Sanger (1988) shows that a
quadrature pair of Gabor functions, used with arctangents rather than energy to calculate complex
phase directly, exhibits an error approximately the same as the ratio of spatial-widths to cycles.
For example, a pair of �lters with t = 1

3
produce a disparity estimate within 33% of the actual

disparity. A pair of cells with t = 1
0:5

would report a disparity within 200% of the true disparity,
which would mean both the true and the reported disparity are anywhere within the RF of the
�lter. This e�ect can be seen in the upper-rightmost subplot of Fig. 2.6 which exhibits no disparity
selectivity compared to its width. It appears that for ideal stimuli such as in Figs 2.6 and 2.7, the
disparity estimate is perfect and no problem appears. However, Sanger also shows that the actual
error (within 200% of the true disparity in this case) is associated with the frequency content of
the image, so for real images with unpredictable frequency content, estimating the disparity based
on the maximally responding cell is not appropriate. For a given RF and range of tunings, any cell
could respond to any given disparity, since they are all within the error estimate. In other words,
the distinction from one maximally responding cell to another is not sharp, and so for an arbitrary
image, the true disparity is ambiguous. It is not clear if this estimate error is directly applicable to
energy-based disparity estimates as used here, but the qualitative similarities are apparent. Finally,
Sanger indicates an upper limit of 1 on t, although the reasons are not clear. Therefore from a
semantic viewpoint we may not use t = 1

0:5
, in addition to the performance reasons discussed here.

Fig. 2.7 also shows in the second row two di�erent weighted energy plots for each value of t.
These were calculated based on the product of the energy output of the cells and their index. The
solid line follows:
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Figure 2.6. Complex cell responses for t =
�
1
3
; 1
1:5
; 1
0:5

	
. The top row illustrates the reduction in

disparity selectivity for zero-tuned complex cells as t increases. The bottom row shows the response

of a full range of tuned cells (x-axis) to a full range of centered stimulus disparities (y-axis). The

index of the maximally responding cell in the subplots of the bottom row sweeps from left (negative

tuning) to right (positive tuning) as disparity increases, and then repeats, the number of repetitions

depending on t.
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Figure 2.7. Index and energy of maximally-responding cell and total weighted disparity energy is

shown. The top row (solid line) shows the index of the maximally responding cell as the disparity

increases. The top row (dashed line) also shows the energy output of the maximally responding cell.

Note that the maximum-index line is more monotonic as t increases (left column to right column),

but that bene�t is traded-o� with the reduced disparity sensitivity. The bottom row (solid line)

shows for each disparity the sum of the products of each cell's energy with its tuning (index), i.e.,

the vector of dot-products, governed by f1 (d) =
P

i2D Ei (d) � i, where f1(d) is the value of the

solid line at disparity d, D is the set of �lter tunings, and Ei(d) is the energy of �lter i for a

particular disparity. The bottom row (dashed line) also shows for each disparity the product of

the maximum-index and its energy value, governed by f2(d) = max(D; d) � Emax(D;d), where f2(d)
is the value of the dashed line at disparity d, max(D; d) is the disparity tuning of the maximally

responding cell for disparity d and Emax(D;d) is the energy output of that cell. These values may

be used to determine how worthy the maximum-index is, or may be used directly as a measure of

maximum index and its strength. The subplots indicate the legal disparity range on the x axis.

Note that the maximum-index is monotonic within this region. This region covers � �
!0

= �
�
2
.
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f1 (d) =
X
i2D

Ei (d) � i (2.12)

where f1(d) is the value of the solid line at disparity d, D is the set of �lter tunings, and Ei(d)
is the energy of �lter i for a particular disparity. The dashed line follows:

f2(d) = max(D; d) �Emax(D;d) (2.13)

where f2(d) is the value of the dashed line at disparity d, max(D; d) is the disparity tuning of the
maximally responding cell for disparity d and Emax(D;d) is the energy output of that cell. Both
lines follow the same qualitative trends, although their quantitative values are di�erent.

2.5 Phase Aliasing: Solution

We consider two possible biologically-inspired solutions to the phase-aliasing (sidelobe) problem,
the �rst of which is implemented in this project and is described in Chapter 4. The second solution
is based on either lateral excitation or lateral inhibition and has not been implemented due to time
constraints. The second solution is described here, however, because it resides entirely within the
�lter bank, whereas the �rst solution uses the output of the �lter bank and some other components.

This second solution involves the large cells in the �lter bank allowing (exciting) or disallowing
(inhibiting) the smaller cells. When there is a large input disparity, all cells initially respond, even
if only weakly. If the largest cells can unambiguously accommodate all input disparities, then the
cells which represent very wide disparities can inhibit smaller cells so that when the disparity is
very large, the smaller cells do not respond at all and hence do not alias. In this case the simplest
architecture is as follows. For any row of cells in Fig. 2.8, there are inhibitory outputs from the
outermost cells which disparities are not shared by any smaller row. The more these cells are
activated, the more they prevent the unshared cells in all the smaller rows from responding, i.e.,
there is an inhibitory connection from the outer cell on each side of the triangle to all the cells
in all narrower rows. Thus, the cells in the smallest rows have the most inhibitory connections.
In addition, for any row, the next-to-outermost cell has an inhibitory connection to the cell with
the same tuning in the next smaller row. The weights must be adjusted so that only when the
outer cells in the wide row are �ring maximally do they completely inhibit the cells in the smaller
rows, and so that for rows that are not completely inhibited, their maximally-�ring cells are all
conjunctive (in agreement and not aliasing). A complementary solution would be to use the inner
cells to excite the cells of smaller rows, rather than having outer cells inhibit. These two solutions
have to be explored further.

2.6 Monoscopic Response

Another problem in addition to phase aliasing occurs in a more realistic usage of the disparity-tuned
�lter bank. Rather than measuring the disparity at only one point in the image as we so far have
done, there should be a �lter bank at each point in the image so a disparity estimate can be made
everywhere. This other problem also occurs when a large disparity is presented to the system. The
stereoscopic stimuli can be interpreted in one of two ways: the �rst way is the intended way, in
which the stimuli are �fused� stereoscopically, i.e., both left and right stimuli fall within the RF of
the underlying simple cells, and the cells between the stimuli respond as if the stimuli represent
the same point in the image. This appears to be the reason for Panum's fusional area. The second
�interpretation� occurs monoscopically, in which a small-RF cell is only wide enough to see one of
the two stimuli. As the stimulus is passed over it, the cells of that RF and spatial point respond,
albeit weakly, and give an incorrect reading of the disparity. They should not respond at all when
there is only one input. Normalizing for frequency content and ignoring the Gaussian envelope
for the moment, the response of a complex cell to only a single left or right point stimulus at the
center of the RF is cos2+sin2 = 1, regardless of the disparity tuning of the cell. Thus, the cell's
actual response is exactly its Gaussian envelope times the cell's frequency-sensitive response; there
is no nonlinear stereoscopic element. Ohzawa et al. (1997) show that a complex cell's response can
be decomposed into two monocular elements (the ones which give the erroneous reading) and one
binocular element:

Rc (XL; XR) = e�2kX
2

L + e�2kX
2

R + 2e�k(X
2

L
+X2

R) cos [2�f (XL �XR)�  ] (2.14)
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Figure 2.8. One possible solution to the sidelobe problem. Arrows represent inhibitory connec-

tions. Each row is inhibited by an outer cell of all the rows larger than it. Each outermost cell

is further inhibited by the cell immediately larger than it with the same disparity tuning. The

smallest cells therefore have the most inhibitory inputs.

where k is the factor that determines the width of the cell, XL and XR are the left-eye and right-eye
stimulus positions, f is the spatial frequency, and  is the disparity tuning phase. By thresholding
the output of the cell to limit the majority of the monocular elements, we can prevent the cell
from responding to an input appearing only in one eye. The threshold may not be a constant,
however, because it must change with the frequency content of the image; hence, it may be called
an �adaptive threshold�. An image which matches the frequency tuning of the cell will have a much
greater response than one that does not exactly match, and so the threshold needs to be greater for
the matching case than for the nonmatching case. It has already been shown that the response of
a complex cell to a purely monocular spike input is unity at the center of the RF and less toward
the edges. We should threshold the output at some value greater than unity, but less than four,
which is the maximum response of the cell to a binocular input. The sums of squares of the simple
cells give us a usable threshold (using the terminology from Eqs. 2.1, 2.2, 2.4, and 2.5):

T = f2l;1 + f2l;2 + f2r;1 + f2l;2 (2.15)

where T is the threshold. If there is no input in the right, for instance, then T will be 1 since the
sum of the square of a sin and a cosine is one, regardless of the phase of the input (ignoring for
the moment the tuning of the cell). The output of the complex cell is also one at this point, so
the threshold should be multiplied by some small factor kt > 1 to force a greater-than relationship
and to suppress the output of the complex cell. When there is input to both eyes the threshold
is 2kt , but the output of the complex cell is 4, well above 2kt. Fig. 2.9 shows what a zero-tuned
complex cell's response looks like before and after thresholding. The plots are slightly di�erent
from similar previous plots because the RF of the cell has been made smaller to emphasize the
monocular response as the left and right bars are allowed to be the sole stimulus in the RF.

2.7 Practical Issues with Two Dimensional Images

So far the discussion has been concerning one-dimensional Gabor cells with one-dimensional im-
ages. The �lters can be easily expanded to two dimensions by adding an unmodulated Gaussian
component in the y direction to yield the following Gabor function in two dimensions:

f (x; y) = e
�x

2

2�2
x e

�y
2

2�2
y sin (!0x+ �) (2.16)

where all the variables take on their obvious de�nitions. This allows the �lters to respond to vertical
lines in a real two dimensional image, rather than single points in the one-dimensional world with
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Figure 2.9. Complex cell tuning before and after thresholding. The wide vertical and horizontal

bars in the left plot are the monocular responses which are removed in the right plot by thresholding

the output of the complex cell.

which we have so far been dealing. The location of the �lters must occupy positions in both the x
and y dimensions of the image. All the experiments with real images carried out in this project used
2D Gabor �lters but they were placed only along a horizontal line. This is because only a (real)
vertical bar stimulus was used for most experiments and so while measurements in the y dimension
for any one �lter is performed, the overall disparity is measured only along the horizontal axis. The
width-to-height ratio (of the sigmas) of the 2D Gabor functions was 2.

Another issue involves determining what portions of the image should be used for extracting the
disparity measurement. In humans this area occupies approximately 6° in the �eld of view (Popple
et al., 1998). In this project the disparity-measurement area is limited by each spatial width; the
range of pixels that any particular RF covered was limited so that the RF did not overstep the
bounds of the image region. An earlier version of the software allowed for the center of the �lters
to extend to the edge of the image, allowing RF overlap and preserving of the output scaling, but
that capability was removed to improve performance and to simplify the design. This is another
reasons only a single horizontal line of cells was used for the majority of the experiments: if multiple
disparities exist along the vertical axis then how should the system choose? In this case, it turns
out that if the disparity-measurement of a 2D area of the image were carried out, the system would
simply average them together.

By limiting the disparity cells to a horizontal line, it is easier to visualize the resulting surface
plots across only an X and a Z dimension. A Y dimension would result in a 3D density plot, which
is hard to visualize and serves no useful purpose in demonstrating how the system works. Perhaps
if the system is used in a real robot with faster hardware, then a more realistic disparity-integration
area can be created.

Finally, Marr and Poggio (1976) specify uniqueness as a desirable feature of a disparity-detecting
system. That is, any point in the image should be assigned one disparity. It is known that
humans have the ability to perceive multiple disparities at one location (Palmer, 1999; Qian, 1997;
Grigo and Lappe, 1998), and although the system presented here does not explicitly prevent a
multiple-disparity-representation from occurring at the �lter-bank level, the vergence controller
reduces this to a single disparity. In other words, there is no �intelligent� or neuromorphic scheme
here that would allow the system to choose the disparity to which the eyes should converge. It
has been shown that humans are sensitive to combinations of disparity and motion, wherein a
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complex cell responds to a stimulus exhibiting a particular disparity at a particular spatial-temporal
frequency (motion).



Chapter 3

EXPERIMENTAL APPARATUS

Because the algorithms developed for vergence control and tracking depend on the physical prop-
erties of the experimental apparatus, we now present a description of the apparatus.

The physical oculomotor system used in this project has several components: the camera frame,
the computer, the XY positioning table, and motor controllers. The frame which holds the two
cameras and servos is a custom-designed-and-built gymbal-type aluminum structure (Fig. 3.1a).
The frame holds each camera on a vertical axis with the servo motor adjacent. Thus, each camera
has independent control of its azimuth (horizontal angle), but they share their elevation (vertical
angle). Although an outer frame was built to control the cameras' elevation, only the inner frame
was used throughout the project; control of the cameras' elevation was not addressed and therefore
the outer frame was not used.

The two cameras (Fig. 3.1b) are MB-1250HRP color CCD board cameras from Polaris Industries
(http://polarisusa.com/mb-1250.htm). They produce 470 lines of color NTSC video from a 1/4"
(actually 3.6 x 2.8mm) interline transfer CCD at the normal 60 interlaced frames per second. The
pinhole lens has a focal length of 5mm, resulting in a �eld of view of 35 degrees. The cameras were
chosen based on their size, weight, resolution, and price. It was desired to have cameras with a
small size and low enough mass so a large frame would not be required and so that an inexpensive
servo motor could move it easily and quickly. The resolution and the fact that they produce color
output were actually beyond the requirements of the system, but the price was low enough (ap-
proximately $200) that the extra �exibility was worth the cost over cameras with lower resolution
and/or grayscale output.

The servo motors used to move the cameras are Hobbico Command CS-11 Micro Servos. Their
maximum torque output is 30 oz�in (0.21 N�m) and their maximum unloaded speed is 400°/sec.
The position of the servo is controlled by the duty cycle of a PWM signal.

The computer generates two of these signals through a Seetron Mini-SSC
(http://www.seetron.com/ssc.htm) servo controller (Fig. 3.1c). The computer runs all the im-
age processing and control software. It is a Gateway Intel PIII-550MHz PC running the Microsoft
Windows 98 operating system, equipped with 128MB of RAM and two Imagenation PXC200 video
capture cards. The cards are capable of 640x480 24-bit color capture at 30 frames per second, with
real-time display to the screen via a DirectDraw library function.

The XY table used for stimulus positioning is an Arrick Robotics model XY-18
(http://www.robotics.com), capable of 18 inches of range in both dimensions (Fig. 3.1d). It is
driven by two generic size #23 stepper motors, which in turn are driven by a Stepper Control A-
200 Stepper Motor Controller (Fig.3.1e) (http://www.steppercontrol.com). Figs. 3.2 and 3.3 show
photographs of di�erent views of the hardware setup.

The control software was written in C++ with the Microsoft Developer Studio 6.0 environment.
All the software elements reside in classes, arranged hierarchically both in encapsulation as well as
in inheritance. This makes it relatively easy to instantiate multiple �lters and cells to cover the
range of tuning frequencies, disparities, and spatial locations. There are also software hooks into
Matlab for ease of data manipulation and visualization. The stepper motor and servo controllers
each provide dynamically loadable libraries for automated stimulus and camera positioning.

A GUI (Fig. 3.4) allows for run-time manual control of the camera positions and ideal-stimulus
width, position, and disparity. The GUI does not have direct XY table control since the stepper
motor controller has its own interface for manually adjusting the table. (In actuality, though, during
development the power to the stepper motors was usually turned o� and the table position moved
manually, since this was more convenient and was much faster than the motors could move the
table; stimulus position accuracy was not critical at this point. During the data-measuring phase,
however, the software did control the table for repeatability and accuracy.) The GUI also shows
the experimenter the two camera images in real-time and their superposition, which is useful to
gauge subjectively the amount of disparity in the image. The software also has the capability to
show the intermediate results of each �lter if necessary, although this feature was included toward
the beginning of the project for easy runtime veri�cation of the system and is not used anymore
because it consumes tremendous amounts of memory and slows the system down greatly.

The entire application was written with wxWindows, an application framework which wraps the
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(a) Camera frame CAD model. Some changes were made between the design and construction,
so there are discrepancies between this model and the photos.

(b) MB-1250HRP high resolution color CCD camera.

(c) Seetron Mini-SSC serial
servo controller.

(d) Arrick Robotics XY-18
positioning table.

(e) Steppcontrol A-200 step-
per motor controller.

Figure 3.1. Small hardware: camera frame, camera, servo motor controller, XY table, and stepper

motor controller.
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(a) Closeup of camera frame. (b) Centerline view of setup.

(c) Front view of setup.

Figure 3.2. Photographs of entire setup showing camera frame and its parts, XY table, stepper

motors, servo motors, test stimulus, and background.
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Figure 3.3. Photograph of setup, top view. Important components are indicated.

Microsoft Windows API into more manageable classes, similarly to MFC, but which also provides
the potential for cross-platform compatibility. This provided easy creation of windows, sliders,
callback functions, etc. Originally it was thought that this project might get ported to Linux,
but it soon became apparent this would not be so; enough of the software is extremely platform
dependent, such as the frame grabber, servo, and motor controller libraries, that the e�ort required
to port the application is too great for any perceived bene�t. In the unlikely event this project is
ported to Linux, drivers/libraries are available for the video capture boards and the stepper motor
controller, and the servo controller only requires a few bytes of serial data for each move. More
detail of how the software works is not very useful at this point, so a separate document describes
the software in detail for the interested reader and includes the full source code.

There are several sources of error in the apparatus. There are approximately 2-4 PWM units
of slack when changing servo direction, which corresponds to 4 � 90Æ=254 = 1:42 degrees of error in
the azimuth (horizontal angle), since there are 254 positions available over 90Æ of arc. There are
also 1-2 degrees (estimated) of slack between the servo itself and the cameras and another degree
or two of angular o�set between the two cameras, due to unequal pushrod length and �exibility
and loose connections in the servo control horns. In addition, the handmade camera control horns
which convert pseudo-linear pushrod motion to angular camera motion are unequal, resulting in
a few degrees/degree of cyclopean angular gain di�erence between the servos and the cameras.
Combining all the known errors yields approximately 5Æ of error around the center cyclopean angle
and a few more degrees at large cyclopean angles. These errors will have an e�ect on the estimation
of absolute stimulus location. Finally, there is a small di�erence (perhaps a fraction of a degree,
or one pixel at a scene distance of about 3-4 meters) in the elevation (vertical angle) of the two
cameras, which does not a�ect this project since only horizontal disparity is considered.
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Figure 3.4. GUI screen capture. The top row of windows shows the images from the left and

right cameras and their superposition. The cameras are not verged on the vertical bar stimulus.

The small window in the top row shows the disparity-tuned �lterbank. The main control panel

shows sliders for controlling manually the position of the servos and their upper and lower limits

and o�sets (which were not used). The "Filter Control" tab was created during the beginning of

the project when there was only one cell and it was feasible to experiment with its parameters

interactively via the GUI
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Chapter 4

VERGENCE

Vergence is the disconjugate rotation of the eyes toward each other in order to center a region of
interest on the retina (Fig. 4.1). This project rests on the notion that vergence control is possible
through measures of disparity, which has been shown to be su�cient for biological systems (Mallot
et al., 1996; Stevenson et al., 1999). Table 4.1 summarizes the population-decoding methods used
here. Others have used disparity for vergence control (Marefat et al., 1997b), but they measured
the disparity directly (geometrically) by taking the arctangent of the ratio of the odd and even
simple cell responses; they did not incorporate a complex cell to measure disparity energy. The
vergence control algorithms here use three di�erent population decoding methods (PDMs) available
from the cells as described in the previous chapter. Since this project did not set out to model a
primate visual system, but only to use a model of such as starting point for a robotic system,
the control scheme presented here does not attempt to model any of the dynamics of a biological
system, including the two-stage behavior or any of the control s-domain dynamics, etc. Since the
servo motors used here are position-based, with their own built-in feedback and positioning control,
it is nontrivial to measure things like angular velocity or position from, or force being applied to,
the cameras. All moves from one angular position to another are performed at full speed, and
there is no reason to model the motion of the eyes other than to claim a better understanding of
how the natural mechanism works. Since the angular positions sent to the servos are discrete, it is
impossible to impose a continuous type control loop on the system.

Previous vergence control models which have been studied for this project assume a disparity
input, although they do not always provide a clear de�nition of what that input is or how it
is derived. In Cova and Galiana (1995; 1994) they claim their control system is essentially a
di�erential ampli�er, with a common-mode (fast response) and a di�erential mode (slow response),
with the inputs coming from a left and a right desired vergence angle. Hung (1998) also expects a
vergence angle as the input to his controller. Patel et al. (1997) made a reference to disparity-tuned
cells providing a winner-takes-all type of input to the vergence controller, but did not elaborate
on how this was done. They do not assume a vergence-angle as the input, but instead rely on
which disparity cell was giving the maximum response to determine the speed and direction of the
vergence change. This scheme �ts best with the system presented in this project, and is thus the
starting point for some of the control methods presented below.

4.1 Using A Single Cell Hill Climbing Method For Vergence Control

The �rst use of disparity for vergence control was developed simply to illustrate that vergence
control is possible using disparity energy from a complex cell as suggested by Ohzawa. This method
consisted of using a single complex cell tuned for zero disparity at each spatial location, and the
use of an 8-state �nite state machine to �nd the maximum energy point. Fig. 4.2 shows a bubble
diagram. The algorithm is an ad-hoc local-hill-climbing algorithm. The state machine scans the

Population Decoding Method (PDM) Equation

1 Maximum max (S (d))

2 Average index in sum-of-columns, weighted with energy
�d2DS(d)�d

�d2DS(d)

3 Sum of energy in sum-of-columns, weighted with index �d2DS(d) � d

Table 4.1. Summary of population decoding methods, or PDM[1-3]). S (d) is the energy output of
a disparity tuning d along the sum-of-columns of a �lter bank, D is the set of �lter tunings present

at the sum-of-columns. PDM1 chooses the maximally-responding cell in the sum-of-columns of a

�lterbank. PDM2 �nds the average index of the sum-of-columns, weighted by energy output. PDM3

reports total energy summed across the sum-of-columns; since the cell indices range from negative

to positive, the sum of weighted energies could be zero, even though all the energies themselves may

be greater than zero. These PDMs are applicable to both the global and local disparity estimates.
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Left eye Right eye

Vergence, top view

Panum’s fusional area

Figure 4.1. Vergence, top view. The eyes rotate until the target is centered in both retinas. Any

remaining disparity can be used to perceive depth within Panum's fusional area.

range of vergence values and records the sum of the cells' output energies for each value of vergence.
At each point in this global vergence scan, it compares the energy to the maximum known energy
and marks the vergence location of the maximum energy so far. Then the vergence makes a
discontinuous jump to the last known maximum location and performs a small local scan to resolve
more �nely the maximum point. If the energy then reduces past some threshold, the algorithm
assumes the depth of the object has moved forward or back, and another local maximum search is
performed, again using several thresholds to mark its place along the hill. If the object moves too
far for the sample-and-update period (temporal aliasing) then the algorithm may get stuck on the
side lobes since those present a local maximum. If the disparity then changes slowly, the system
will continue to lock on to the sidelobe instead of the global maximum. The result is a 1D disparity
tuning pro�le, as shown in Fig. 6.1 in Chapter 6. The pseudo-code representation of the state
machine may be found in Appendix A of this document; Fig. 4.2 presents a bubble-diagram.

Part of the di�culty in developing the hill-climbing algorithm was that there is considerable
hysteresis in the servo motors as explained in Chapter 3; a jump back to some vergence value is
likely to undershoot the desired location, thus a guarantee of the distance from the hill maximum
is limited by the hysteresis of the servos. If the thresholds in the algorithm are made too �tight�,
the algorithm will never converge, or will converge in a long time, because the vergence will always
jump back and forth around the hill maximum and never reach it, or reach it only by a chance
misstep someplace else which places the jump to the correct location far enough away that a single
jump or two will actually reach it. The algorithm also does not always converge to the proper point
after the initial sweep, and it certainly may get �lost� somewhere on the disparity energy pro�le if
it makes an erroneous jump. Another problem is that the hill maximum recorded in a �scanning�
state, such as states 4 and 5, may have been a noisy value and that value does not exist when the
controller goes back to �nd it if the threshold is set too close to the measured value. Low pass
�ltering relieves this issue, but slows the system down. The height of the hysteretic windows used
for this algorithm were therefore determined experimentally, and were generally found to be useful
at 1/25th the height of the energy value they were surrounding. Another drawback to this method
is that the energy from a single cell appears very sensitive to shadows in the image. It is sensitive
to the point that the faint (unnoticeable by the experimenter) shadow of a person walking a few
feet away from the apparatus may reduce the energy enough for the system to interpret that as a
change in target object depth and to initiate the local hill climbing scan. Finally, another problem
is that when the target object moves in depth and the output energy decreases, the system does
not inherently know which direction the target has moved, either closer or farther. Thus, the hill
climbing algorithm must pick a direction to test the energy slope and immediately change direction
if it is incorrect. In this implementation the initial search direction used for a local-maximum scan
is the direction of the last movement.
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Figure 4.2. Bubble diagram showing state machine for primitive hill-climbing vergence control

algorithm. The cameras were �swept� over their entire vergence range while total disparity energy

was recorded. The cameras were then returned to the position of maximum energy and made to

�nd the local maximum, which was assumed to be the global maximum.
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4.2 Using A Disparity-Tuned Filter Bank for Vergence Control Via Glob-

al Disparity Estimate

The second use of disparity for vergence control uses the �lter bank as a measure of global disparity.
In Chapter 2, a �lter bank was described as existing for each point in the image, thereby giving an
RF-tuning estimate for each point in the image. By summing the results of the individual location-
speci�c maps we can derive the global disparity estimate. The result of the sums is an RF-tuning
map that returns the frequency content and disparities of the image averaged over space. This map
can be used with the three PDMs to extract a single value used for vergence control.

PDM1 simply gives us which cell in the sum-of-columns is �ring the most. PDM2 gives us the
centroid of all the cells, depending on how much they are �ring. PDM3 gives us the product of
energy and the indices from where it came; e.g., a lot of energy near zero disparity or little energy
anywhere will return a low value, whereas only a lot of energy at a distant non-zero disparity
will result in a signi�cant return value. PDM3 was developed so that a scene with little or noisy
information would result in little response, rather than always giving some response, regardless of
scene content, driving the controller to some erroneous value. The RF-tuning map can also return
the energy sum of all the cells.

Since this use of disparity information removes any spatial speci�city of the source(s) of the
disparities, the system does not know where the stimulus is in its �eld. This method can be
considered �cell-centric� in that each cell in the resulting global RF-tune map is the sum of the
same homologous cells in all other spatial locations, thus removing spatial speci�city. The particular
software implementation of the cells made this the next easiest interpretation to implement after the
�rst use of disparity with the state machine. Since the spatial location of the stimulus is removed,
the disparity energy cannot be used to keep the target object centered in the �eld (horizontal
tracking), one of the stated goals of this project.

4.3 Using A Disparity-Tuned Filter Bank for Vergence Control Via Local

Disparity Estimates

The third use of disparity for vergence control is similar to the second, but it preserves spatial
speci�city of the source of the disparity. This third method can be considered �pixel-centric�
because all energies from all RF widths for a particular disparity are summed for each spatial
point. The easiest way to visualize this is in the x-d (x location vs. disparity) space, which is the
model assumed for the following discussion. Fig. 4.3 shows a visualization of x-d space with a
real vertical bar stimulus. For each coordinate in the x-d space, the energies from all cell widths
are summed. This way, the disparity energy at each location is measured. If there are multiple
disparities for any one location, this method should theoretically be able to represent that situation.

The x-d space can be expanded to x-y-d space if required, simply by adding cells along the
y axis of the �eld, however this causes di�culty in visualization since it would require a true 3D
display, and it would increase the complexity of the system to include some way of interpreting
disparity values along the y-axis in a reasonable manner. See Marr and Poggio (1976) for a set of
requirements a disparity measurement system should have, but also see Marshall et al. (1996) for
a nicely working system that violates those requirements.

The three PDM outputs and the total energy can be derived from the x-d space similarly to the
cell-centric method. It turns out that using the maximum cell (PDM1) in x-d space combined with
the total energy of all the cells in a complex controller (below) produces the best vergence control,
and using the average (centroid) of the cells (PDM2) in x-d space resolves the remaining disparity
and horizontal position into real Cartesian coordinates.

The vergence signal obtained via cell-centric or pixel-centric methods is then fed to either a
�simple� or a �complex� vergence controller described below. Recall that the disparity estimate is
only a relative di�erence between the horopter and the target object; the disparity estimate cannot
give an absolute angle for vergence. However, it is also desirable that the vergence and horizontal
controllers return the eyes to some neutral position in the absence of any valid data, not only to
mimic biological behavior, but also to e�ect a �search� for a valid vergence angle if the controller
gets stuck in a sidelobe.

4.4 Simple Controller

The simple controller shown in Fig. 4.4A is basically an integrator. It takes as input a disparity
estimate which it converts to a change in the vergence angle by some scaling factor determined
experimentally. It then adds this delta angle to the current vergence angle and moves the cameras.
This allows the vergence angle to stabilize when the disparity estimate is zero, and to accumulate
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Figure 4.3. Example of x-d space. The aggregation of energy shows the location of the stimulus,

both in horizontal (x) space and in depth (disparity). This plot was taken from a real vertical bar

stimulus.

small integral disparity amounts which would individually not cause much change due to slack in
the servo motors, etc. At one point it was thought that the PDM3 value could be used to �pull�
the vergence away from some neutral position, opposed by a �spring�, so that when there was little
energy, the system would return to its neutral position. Unfortunately, when the disparity did get
corrected to zero by a vergence move, the cameras jumped back to their neutral position since the
energy with zero disparity is zero, and the system would oscillate. This could be interpreted as
there being too much gain for the sampling rate, or as a large gain error in a di�erence-ampli�er
(due to too low a gain, if the system were continuous). It was also determined that using the energy
this way in e�ect removed the assumption that the disparity was only a relative di�erence between
the horopter and the target, and instead wound up interpreting the disparity as an absolute angular
position. As this was discovered fairly late in the project, the PDM3 value remains in the block
diagram, although its use is deprecated.

Another concern is that the PDM2 value would often yield results between 0 and 1, but the
software servo driver only accepts integral values. (The integral positions of the servos themselves
combine to serve as the integration variable). This means that small nonzero disparity values could
not be used to turn the cameras, as their values would not accumulate over time (with each cycle the
error would get truncated to zero), leaving a small but constant error. More importantly, however,
a small nonzero disparity value could also be obtained by a disparity estimate with a lot of side-lobe
activity, i.e., a large disparity (and hence large sidelobe) can result in an average disparity close to
zero. If the sidelobes are approximately the same size as the main lobe, then the average can easily
be near zero, but still less than 1, thus exacerbating the detrimental e�ect of sidelobe ambiguity by
failing to pull the cameras in the correct direction. The e�ect is that the system is more likely to
stabilize (�lock�) in between the main lobe and the sidelobe, which is a much more serious problem
than a small error near zero disparity which cannot be accumulated. It was decided that only the
maximally-�ring cell (PDM1) should be used as input to the vergence controller, since that does not
compromise the range of disparities as much as the average does. The average (PDM2) can be used,
however, once the vergence has stabilized, to estimate the true disparity and therefore the depth
around the horopter, since at this point the sidelobes are assumed to be minimal or nonexistent.

4.5 Complex Controller

The major problem with the simple controller (Fig. 4.4A) is that unless the disparity estimate
is zero, regardless of the amount of energy in the system, it always wants to move the cameras
somewhere. In the case of a scene with a low signal-to-noise ratio, the maximum point of disparity
could conceivably jump around, causing the eyes to move discontinuously with no apparent motive,
and if the eyes get stuck in some sidelobe (still possible, though the chances are reduced with the
use of maximally-�ring cells rather than average cells), then attempts to correct them by moving
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Figure 4.4. System-level block diagram showing the two controllers for the three vergence and two

tracking methods. Region A Shows the simple controller. Region B Shows the complex controller.

Region C shows how the disparity-tuned �lterbanks cover the visual �eld and are used as inputs

to the simple or complex controllers. It also shows towards the bottom a phase-based horizontal

tracking mechanism. The outputs of the system are angles for the left and right servo motors.
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the stimulus to an extreme position can cause the error to grow, causing a signi�cant (if not stupid-
looking) amount of cross-eyes or its opposite, �goat-eyes�.

Similarly for the tracking, if the control relies only on relative maximum locations, the perceived
target could jump around, or the shading gradient of the background could be interpreted as data,
causing the eyes to move to the extreme left or right. There ought to be some way of qualifying
disparity with the overall amount of energy in the system, which allows for the eyes to move back
to a neutral position when there is not enough energy, and to move to the appropriate vergence
value when there is enough energy. The value from PDM3 (total energy weighted by disparity) was
a �rst attempt at solving this problem, but it has been shown in the last subsection why it does
not work.

Biology has demonstrated its nonlinear nature, for example, in the sigmoidal soft-threshold
function of a generic neuron. By using a soft threshold function on the total energy of all the
cells and combining it with the index of the maximally-�ring cell and the desired neutral position,
a delta-vergence can be given to the servos so that strong zero-disparity response results in the
eyes remaining where they are, but a weak zero disparity (or weak any-disparity for that matter)
response will result in the eyes moving back to the neutral position. This move to a neutral position
is quite e�ective in recapturing the disparity-lock when the eyes are verged near and the target is
moved away suddenly beyond the point of maximum disparity so that big sidelobes are created.
Because this new stimulus creates less overall energy, the thresholding function does not �re, and
the controller goes back to its neutral position. We set the neutral position and the sigmoid function
to return the eyes to a reasonable location where the stimulus might be. In this case, a vergence
value of 20 (servo units) causes the eyes to verge to a location approximately 24 inches away, which
is the edge of the X-Y table on which the stimulus is placed (Chapter 3), and which allows a large
range of remaining disparities to be resolved by the largest-RF cells in the �lter bank.

The following is the sigmoid function used in the complex controller:

f(E) =
max�min

1 + e�k(E�E0)
+min (4.1)

where max is the index of the maximally �ring cell, min is the di�erence between the current
vergence angle and the neutral vergence angle, k is the sharpness or steepness of the threshold, E
is the total energy of the cells, and E0 is the center-point of the slope, i.e., the threshold itself.
k is set to yield a �smooth� curve which almost reaches the extremes over the domain of the
function. E0 and therefore k are determined experimentally, and vary with the number of cells
used. These variables are represented in the block diagram (Fig. 4.4B) by expanded signal names.
The numerator determines the range of the function, as the function asymptotically approaches
horizontal with +/- range. The term added on the end recenters the function vertically so that
when the energy is great, the index of the maximally �ring cell is used, and when the energy is
weak, the di�erence between where it is now and where it wants to go (neutral position) is given
to the controller. Fig. 4.5 shows the sigmoid function.

4.6 System Integration

Figs. 4.4A and 4.4B show the system as described so far. The simple and complex controllers
are shown at the top. The simple controller is a straightforward combination of a gain element
and an integrator, which shows the cumulative nature of the vergence algorithm. The complex
controller works as follows: the maximum of the sigmoid is given by the maximally �ring cell, or
other population-decoded quantity indicating a direction and/or magnitude to move (the average
disparity and average energy was discussed earlier and it was determined these quantities are not
as useful as simply using the maximally �ring cell). The minimum of the sigmoid is given by the
di�erence between where the vergence angle is and the neutral position. In other words, since this
is a delta-based controller, the di�erence is the change required to move the vergence to the neutral
position. The midpoint (threshold) and the slope of the sigmoid are determined experimentally and
are dependent on the number of cells in the system. The output of the sigmoid is determined �nally
by the total energy coming in to it, either from the cell-centric or pixel-centric disparity estimation.
The output of the sigmoid is given to an integrator as the amount by which the vergence angle
needs to change.

The block at the left of Fig. 4.4C represents the bank of disparity-tuned �lters for each spatial
position. These �lters are summed together across spatial position to yield the cell-centric (global)
disparity estimate, represented by the single-pyramidal diagram, or they are summed at each pixel
individually, and yield the pixel-centric disparity estimate, represented by the x-d space grid. The
cell-centric and pixel-centric estimates both produce the disparity index of the maximally-�ring cell
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Figure 4.5. Sigmoid function with varying k values. A max value of 10 and a min value of -5

were used. The domain is 100 and the threshold was set to the middle of the domain.

(or the index of the pixel with the most energy in the case of pixel-centric), the average index of
the cells, and the average energy weighted by index of all the cells. They also produce the total
energy of the cells. The switches represent the options available at the software level for how to
combine the di�erent values. The software does not implement any switches per se, but di�erent
sections of code can be commented in or out and the code recompiled for the same e�ect. Finally,
either the simple or the complex controller is chosen for the vergence control. At the bottom of the
diagram are phase-sensitive �lters similar to those used in Lu and Shi (2000), which can be used for
horizontal tracking (to be discussed in Chapter 5). Finally the vergence and cyclopean angles (the
average conjugate angle of the eyes, i.e., the �look angle�, where the eyes are pointed horizontally)
are combined to produce left and right servo commands to control the cameras.



Chapter 5

HORIZONTAL TRACKING

This chapter discusses two forms of horizontal tracking (controlling the cyclopean angle of the eyes)
and the conversion of pixel data to real-world Cartesian coordinates.

5.1 Phase-Based Horizontal Tracking

Of the two forms of horizontal tracking, one gives vastly better performance than the other. The �rst
method is similar to how Hansen and Sommer (1996) and Marefat et al. (1997b) used a conjugate
pair of simple cells to estimate disparity and how Lu and Shi (2000) performed both tracking and
vergence control. It consists of a conjugate pair of simple cells for each image which RF covers the
entire �eld of view and which sinusoids take one complete cycle to cover the image width (lower
part of Fig 4.4C). By taking the average of the arctangent of the ratio of the responses of the odd
and even cells for left and right images, an angular measurement is computed, which is interpreted
as belonging in the image width of 2� radians. Equation 5.1 shows this relationship.

p =
Wimage �

h
tan�1

�
Il(x)?sin!x

Il(x)?cos!x

�
+ tan�1

�
Ir(x)?sin!x

Ir(x)?cos!x

�i
4�

(5.1)

where p is the horizontal location estimate of the stimulus in pixels,Wimage is the width of the image
in pixels, and ? is the convolution operator. The 4� in the denominator accounts for averaging the
left and right position estimates as well as converting the resulting phase from the arctangent into
usable pixels; ! is chosen so exactly one cycle �ts within Wimage.

This estimate yields the average location of positive-contrast pixels in the image. This method
is contrast dependent (it shows positive direction for white-on-black stimuli and negative direction
for black-on-white stimuli), which is clearly not useful in a real-world robotics application. The
value of this location is presented to the tracking controller as shown in Fig. 4.4C.

In experiments with a software-generated ideal stimulus (a vertical bar a pixel or two wide), the
system worked �ne; it tracked the vertical bar from left to right perfectly. The system performed
horribly, however, when viewing real images: the perceived x-location of the bar when the eyes
were stationary was not monotonic from left to right as expected, and when the eyes were allowed
to move, they stabilized with the stimulus considerably to the left of the image, due to shadow-
induced intensity gradients present in the plain-white background. The system performed a little
better when only delta-position changes were used to control the tracking, as in Lu and Shi, rather
than absolute position, but the performance was still not acceptable. Clearly another horizontal
tracking method was needed.

5.2 Tracking From x-d Space

The vergence control methods presented in Chapter 4 can be used directly to achieve tracking as
well. Tracking is achieved by taking the x location in the x-d space of the pixel with the most
energy and running it through either the simple or the complex controller; the complex controller
has the added advantage (as in vergence) of allowing the eyes to return to some neutral position
in the absence of su�cient energy. Thus the vergence controller centers the stimulus in d-space,
while the horizontal controller centers the stimulus in x-space. The energy centroid in x-d space
after vergence and tracking have stabilized is used to estimate the exact position of the target and
to account for regions in the �eld or �lterbank where cells may not have been instantiated.





53

Chapter 6

EXPERIMENTS, MEASUREMENTS, AND RESULTS

To test the system we ran some experiments to determine its range, accuracy, and fault-condition
behavior (Table 6.1). The stimulus was a long vertical black bar approximately one inch wide,
covering the vertical �eld of view, placed on the XY table (Chapter 3). A plain white background
covering the entire �eld of view was set behind the stimulus to minimize noise. The lighting was
standard o�ce �uorescent overhead lighting. The �rst experiment was run once to demonstrate the
feasibility of using disparity energy for vergence control. The second, third, and fourth experiments
were run 10 times while the disparity-tuned-�lter banks were used in pixel-centric mode and the
resulting data were fed into the complex controllers.

6.1 Experiment 1

The �rst experiment (Fig. 6.1) tested the vergence capabilities of the state-machine tracker. Since
this was meant only as a proof-of-concept control algorithm, not as many tests were run with this
as with the disparity-tuned �lter bank methods. The stimulus was centered in the XY table and
the cameras were centered in their cyclopean angle. The system was started and the cameras
were allowed to do their initial sweep to �nd the target location via disparity energy maximization.
After the sweep the cameras returned to the position where they recorded the most disparity energy
and performed a local maximum search. When it found the local maximum it marked this as the
global maximum and waited for the energy to fall below a threshold before commencing the local-
maximum search again, which in this case did not happen because the stimulus was not moved.
The experiment was observed subjectively by this author and at the end of the experiment the
superimposed images displayed no noticeable disparity. Thus, the error in the plot between either
of the two global maxima and the computed correct vergence angle is due to the imprecision of the
camera platform as discussed in Chapter 3; the error is within the tolerance estimated there.

6.2 Experiment 2

The second experiment tested the open-loop position-estimation accuracy by maintaining the cam-
eras verged toward the middle of the setup table while the stimulus was moved across a range of X
and Z positions in a square-wave pattern: 16 cycles of forward-sideways-backward-sideways, each
point spaced 1

2
inch apart. Figs. 6.2 and 6.3 shows the average X and Z position estimates, their

standard deviations, and known stimulus positions versus position index. The disparity and x pixel
locations were taken from the centroid of the x-d space, not the maximum point. The X axis follows
rather closely in the middle of the plot where the stimulus was in the �eld of view. The Z axis
follows only for small portions of each cycle, where the disparity was within range of the largest
�lterbank cells. The e�ects of phase-aliasing are shown in the middle of each cycle, where the Z
estimate jumps from a somewhat correct value at one end of the tuning range toward the other end
of the tuning range.

Fig. 6.4 shows the same data, but instead shows it as an error plot over the Cartesian space.
The curved dark area of the plot is where the error was minimum. The minimum point in the
whole plot is 2.10 mm; the maximum is 301.85 mm. Since the center of this region is closer to the
cameras than the center of the test area, which is where the cameras were verged, this probably
indicates a consistent o�set in the angle estimate of the servos positions. This area �ts within a
v-shaped region which indicates the system's �eld of view over depth. This plot does not show the
phase aliasing explicitly, but the transition between the dark region and the more errorsome regions
appears nonlinear, re�ecting the discontinuous jump of phase aliasing. The standard deviation over
the 10 experiments ranged from a minimum of 0.17 mm near the center of the table to a maximum
of 6.97 mm toward the rear left edge; the data were very consistent across the 10 experiments.

The parameters for this and the remaining experiments were as follows: cell widths were 27, 48,
69 pixels, each with 7 disparity tunings equally spaced across the width of the �lterbank row. The
cells were spaced 4 pixels apart, starting in the center of the visual �eld and extending to either
side until the cell's RF met the edge of the visual �eld, yielding a total of 410 cells. Bear in mind
each cell consisted of 4 convolution �lters, for a total of 1640 �lter computations per sample. The
visual �eld was 112 pixels wide by 72 pixels high.
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Figure 6.1. Experiment 1 result: Using a state machine with a single cell tuned for zero disparity,

located at many spatial locations, to control vergence. The plot shows the sweep from the minimum

vergence angle to the maximum vergence angle, with the energy plot matching qualitatively the

disparity-tuned pro�les presented earlier. At the end of the sweep on the right the system returns to

a previous location to perform a local-maximum search. Once it has reached the maximum within

some window then it stops and assumes it has found the global energy maximum. The correct

vergence angle was computed from the known location of the stimulus (center of the XY table)

and is the theoretical angle to which the cameras should verge, based on the CCD-to-Cartesian

equations discussed in Appendix B. The error is within the tolerance estimated in the hardware

discussion.
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Figure 6.2. Experiment 2 results: X position estimate versus index. The cameras were verged

and centered to the middle of the table while the stimulus was moved through a grid of points 1
2

inch apart. This plot shows the average over all the runs of the X estimates (thick lines) and known

stimulus positions (thin lines) versus position index. The system estimates the X position closely

for a region in the center of the �eld of view (the X location increased monotonically over all the

points). The second plot shows the standard deviation of these measurements, indicating a very

consistent measurement in the center of the �eld of view. The standard deviation is shown on a

separate plot for this reason � it is not visible when plotted at the same scale.
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Figure 6.3. Experiment 2 results: Z position estimate versus index. The cameras were verged and

centered to the middle of the table while the stimulus was moved through a grid of points 1
2
inch

apart. The top plot shows the average over all the runs of the Z estimates (thick lines) and known

stimulus positions (thin lines) versus position index. The system estimates the Z position closely

for some regions in the center of the �eld of view, where the disparity was within range of the cells.

The second plot shows the standard deviation of these measurements, indicating a very consistent

measurement in the center of the �eld of view. The standard deviation is shown on a separate plot

for this reason � it is not visible when plotted at the same scale.
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Figure 6.4. Experiment 2 results: Stimulus location estimate error versus position. The cameras

were verged and centered to the middle of the table while the stimulus was moved through a grid of

points 1
2
inch apart. This shows a surface plot of the mean estimate error across the Cartesian plane

across all 10 iterations of the experiment. The dark region in the center shows the best estimate

(least error) and reveals an o�set in the camera position estimate. The minimum point in the plot

is 2.10 mm, the maximum point 301.85 mm.
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Number Experiment name Basic Operation Camera Control

1 Energy maximize single cell hill climbing state mach. verg. only

2 Estimation accuracy pixel-centric �lterbank not controlled

open-loop estimation

3 Peripheral vision pixel-centric �lterbank complex control of

closed-loop control vergence and cycl.

open-loop residual est.

eyes centered each cycle

4 Tracking accuracy pixel-centric �lterbank complex control of

closed-loop control vergence and cycl.

open-loop residual est.

Table 6.1. Table of experiments. This enumerates the experiments used to test both the disparity

estimation and the disparity-driven tracking capability of the system. Experiment 1 maximized

the energy produced by one cell at each location via an ad-hoc hill-climbing method. Experiment

2 tested the estimation accuracy of the x-d space representation. Experiment 3 tested the step-

response and peripheral range of the system using closed loop x-d space control and residual open-

loop estimation. Experiment 4 tested the closed-loop tracking accuracy combined with the open-

loop estimation accuracy of the x-d space representation.

6.3 Experiment 3

The third experiment tested the system's step response and range of sensitivity (�peripheral vision�).
For each point in the square-wave pattern, the cameras were initialized to point at the middle of
the setup table. Then they were allowed to verge and track to whatever stimulus they saw. Figs.
6.5 and 6.6 show the average X and Z position estimates, their standard deviations. and known
stimulus positions versus position index, calculated identically to the data of Experiment 2. It
is clear from these �gures that allowing the cameras to move resulted in a much wider range of
low-error stimulus position estimates, compared to those of Experiment 2, although the errors
themselves seemed larger (Fig. 6.7). In areas near the cameras the errors seem excessive. Upon
closer inspection, the large depth errors (the discontinuous spikes) occur mostly near the cameras,
where the disparity was beyond the limits of the system, and the system found some sidelobe on
which to lock. The non-spiked depth errors seem to occur far away from the cameras in the right
half of the �eld. The reasons for this are not clear, since the error seems to grow continuously
toward that region, indicating the system �knows� in general where the stimulus is (i.e., is not stuck
on a sidelobe), but is not able to report its position correctly, probably because of some error in
the mechanical apparatus. It appears also that the largest errors were accompanied by the largest
standard deviations, further implicating the nonreliability of the mechanical system to resolve �ne
movements, especially for far target distances where small movements result in large changes in the
estimated position.

Other regions of large error occur when there is very little energy in the system (bottom subplots
of Figs. 6.5 and 6.6). In these cases the cameras did not move much away from their original
center position since the energy was not enough to �trigger� the sigmoidal function in the complex
controllers. In these cases the error was less than the other two error types because the system just
assumed via the neutral position of the cameras that the stimulus was in the middle of the table,
rather than in some distant location.

Fig. 6.7 shows a surface plot of the errors. Errors displayed were limited to 500 mm to provide
better contrast. These plateau regions show the areas of greatest error: immediately in front of
the cameras, and far away to the right. The nearby errors indicate strong sidelobe e�ects and the
inability of the system to verge to these large disparities. The far-away errors indicate the loosenes
of the mechanical hardware.

Fig. 6.8 shows the disparity energy across the stimulus region. Black areas indicate places where
the stimulus was completely out of the �eld of view of the cameras. Light areas show that there
was enough energy, even at the periphery, for the cameras to jump to that location and record the
data. The v-shape therefore indicates the �eld of view of the cameras. The energy toward the back
of the setup table (large Z) was used to set the center-region and slope of the sigmoidal controllers.

Fig. 6.9 shows the residual errors (x-d energy centroid distances away from x-d center) and
again the energy after camera stabilization. Since the system was running in closed loop, the errors
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Figure 6.5. Experiment 3 results: X position estimates versus index. Thick lines indicate estimat-

ed stimulus position; thin lines indicate actual stimulus position. The top plot shows the average

X position over all 10 runs of the experiment; the middle plot shows the standard deviation, and

the bottom plot shows the total disparity energy. The second plot was truncated to 200 to allow

some contrast to be seen. The large spike seen in this plot had a value of 497.
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Figure 6.6. Experiment 3 results: Z position estimates versus index. Thick lines indicate estimated

stimulus position; thin lines indicate actual stimulus position. The top plot shows the average Z

position over all 10 runs of the experiment; the middle plot shows the standard deviation, and the

bottom plot shows the total disparity energy. The second plot was truncated to 350 to allow some

contrast to be seen.
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Figure 6.7. Experiment 3 results: Stimulus location estimate error versus position. This plot
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Figure 6.9. Experiment 3 results: Mean of residual errors. The disparity errors are with the range

of �2 due to the spacing of the cells within the �lterbank. The x errors are near zero in regions

where there is enough energy to trigger the cameras to move; values in regions of low energy are

probably caused by intensity gradients in the background of the scene.

should remain around zero. Even in the case of large position-estimate errors where the system
completely missed the location of the stimulus, the residual disparity error was still low, indicating
the system interpreted the overly large disparities (sidelobes) as within range. The disparity limit
was �2 because the large disparity cells were spaced apart in tuning such that -2, 0, and +2 were
the closest three cells around zero. Any disparity larger than 2 would have triggered the vergence
controller to reduce the disparity error given that the energy was large enough. Similarly for the
x-error, the error remained around zero for regions where there was enough energy to trigger the
controller.

6.4 Experiment 4

The fourth experiment tested the system's ability to verge onto and track a moving target. It
started with the stimulus in the center of the table and the cameras verged and centered on the
stimulus. The stimulus then moved in 8 concentric circles of expanding radius while the cameras
were allowed to track the stimulus in both X and Z. Figs. 6.10 and 6.11 show the mean X and
Z components of the known and estimated stimulus position across all 10 runs, as well as their
standard deviations.

Each circle was traversed 3 times per experiment for a total of 30 traversals per radius. The
disparity and x pixel locations were taken from the energy-weighted centroid of the x-d space
(PDM2), not the maximum point, although the tracking and vergence controllers did use the



64

0 200 400 600 800 1000 1200
−300

−200

−100

0

100

200

300
Average Weighted X Stimulus Position and Standard Deviation

X
 p

os
iti

on
, m

m

0 200 400 600 800 1000 1200
0

10

20

30

40

Sample index

X
 p

os
iti

on
 s

td
de

v,
 m

m

Figure 6.10. Experiment 4 results: X trajectory plot and standard deviation. The cameras were

verged and centered to the middle of the table and allowed to track the stimulus while it moved

around in concentric circles of increasing radius. The top plot shows the average of the estimated

trajectories (thick line) and the real trajectory (thin line) across all 10 runs of the experiment. The

second plot shows the standard deviation of these estimates.

maximum point in the x-d space (PDM1). There were 48 points per circle, each of which was
traversed 3 times per experiment. There were 8 radii (starting at 0, in increments of 1 inch), and
10 total experiments, for a total 11520 samples over 384 unique locations.

Fig. 6.12 shows the remaining disparity and x-location after the cameras settled on each point.
Although the maximally-responding cell was always in the center of the x-d space at the end of
each sample (by de�nition of closed-loop, the end of the sample was reached when the maximally
responding x-d location was in the middle of x-d space, i.e., when both x and d were zero), the
average location of the energy (centroid) in the x-d space was not always centered perfectly. For
a closed loop system where the centroid is always near zero, this error is useful to cover �holes� in
the x-d space where cells do not exist, and to provide an estimate of where the target is around
the intersection of the cameras' axes. Any increase in the density of cells in the x-d space would
improve the error estimate as well as provide cells closer to zero which would allow the error to be
reduced even further.

Fig. 6.13 shows the same error data compared with the real Cartesian space, rather than the
index of points. It is much clearer to see where the system had di�culty estimating the position
of the stimulus, and there is corroboration with Experiment 3 in terms of where the system had
the most di�culty � toward the back and sides. The system apparently had little problem near
the cameras, unlike in Experiment 3, in which it was allowed and able to track the stimulus as it
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Figure 6.11. Experiment 4 results: Z trajectory plot and standard deviation. The cameras were

verged and centered to the middle of the table and allowed to track the stimulus while it moved

around in concentric circles of increasing radius. The top plot shows the average of the estimated

trajectories (thick line) and the real trajectory (thin line) across all 10 runs of the experiment. The

second plot shows the standard deviation of these estimates.
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came closer. The minimum, mean, and maximum are shown with the same scale; the di�erence
between the maximum and minimum is formalized in the standard deviation. There appear to
be two regions toward the back of the table (large Z) where the system had di�culty. It is not
clear why these regions exist; it was expected that the error would increase gradually over distance,
rather than be focused in one or two regions. The mechanical system is the mostly likely cause,
since Experiment 2 shows the smoothness and symmetry of the error with no camera movements,
i.e., the error in Experiment 2 is �well-behaved�, whereas for Experiments 3 and 4 the error is less
�well behaved�.

6.5 Discussion
The data above show that overall, the system �works�: it can estimate stimulus positions around the
horopter given positions for the cameras, and can also move the cameras to center the target in x-d
space. From a subjective/observational point of view, the tracking performed extremely well; the
stimulus remained in the center of the GUI window which shows the superposition of the left and
right images, and with a reasonable density of cell tuning in the �lter bank, this image was sharp
at the edges, indicating minimal residual disparity. In the experiments shown here the residual
disparity error was rather large (�2 pixels) because of the large spacing between cell tunings for
any given RF width. Informal experiments revealed this error to decrease to below 1 pixel when
the cells were spaced one pixel apart. The tuning density was reduced to speed up the experiment
time. Each perception cycle took about 1-2 seconds and the experiment required the cameras to
not move for 2 cycles after stabilizing before moving the stimulus again. Thus, each stimulus point
during the tracking experiment consumed on the order of 5-10 perception cycles. This certainly
cannot be considered �real-time�.

Another issue is the errors that are shown in Fig. 6.13. These errors appear quite large in this
view, but the same data in Figs. 6.10 and 6.11 seem less severe; other experiments showed �about
the same� errors when the X and Z dimensions were viewed separately. Since the cameras remained
verged on the stimulus within an x-d distance of 2 pixels (Fig. 6.12), the grossness of the error
must come from the fact that a) the angular estimates are not very good, and b) small errors in
the angle estimate and in the location of the centroid in x-d space result in large estimate errors
when the stimulus is far away, i.e., when the vergence angle is small. What remains unclear is
why there appear to be two regions of larger-than-average errors in the plots of Fig. 6.13 and one
(unexplained) region of extremely large error in Fig 6.7.

Another point that must be taken into account is that these errors are only in the conversion
of CCD space to Cartesian space. The majority of the points in the data shown here are points
that have been properly centered and verged upon. A mobile robot which is based on biological
principles will probably not need to know the position of a stimulus in any particular unit, only
that it is �over there� by some amount relative to something else. The ability of the system to verge
on, track, and ultimately interact with an object is not related to how well it can report to the
outside world the position of that object. The ability of a biologically-inspired robot to function
properly without expensive, accurate hardware can be considered an advantage over robots that
require knowledge of units such as meters, seconds, etc.

These experiments show that tracking and vergence are indeed possible using disparity energy.
The next layer of processing in a mobile robot must decide what to do with the image after the gaze
is on the target. By incorporating the features of this software into a real-time hardware system
with continuous control of the motors, it should be possible to have a very responsive and robust
vergence and tracking system for a mobile robot.
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Figure 6.13. Experiment 4 results: Error min, mean, max, and standard deviation versus position.

The cameras were verged and centered to the middle of the table and allowed to track the stimulus

while it moved around in concentric circles of increasing radius. This plot shows the minimum

(a), mean (b), maximum (c), and standard deviation (d) of the distance from the known stimulus

positions to the measured stimulus positions (error) over the Cartesian plane across the 10 runs of

the experiment. The camera location is centered in the X axis (of the �gure coordinates), nearest

the viewer.



Chapter 7

PROPOSED VLSI ARCHITECTURE AND FUTURE WORK

This system has been designed from the beginning with a hardware implementation in mind. The
goal is to place an animate-vision system with vergence and tracking capabilities on a mobile robot.
The subgoals of low power consumption, high reliability, and continuous time-and-value operation
must be met. Work in the Higgins lab and elsewhere has demonstrated that a multichip analog-VLSI
approach using the address-event-representation (AER) (Boahen, 1999; Higgins and Shams, 2000;
Higgins and Koch, 2000) to communicate between chips is likely to be a feasible solution. This
chapter discusses an architecture (based on a simpli�cation of Fig. 4.4) which �ts into the AER
neuromorphic analog-VLSI framework, and which satis�es the above goals.

7.1 Introduction
It becomes immediately clear that the resources and �exibility in a hardware system are more
restricted than in a software system, but the tradeo� is real-time operation and vastly lower power
consumption (Higgins and Shams, 2000). In the software system the number and shape of �lters
and cells may be freely chosen, but a hardware system is more likely to require these parameters
to be �xed or severely limited in �exibility, or require a large amount of hardware to match the
magnitude of the system found in software. This architecture should be expandable to support
many di�erent RF widths and disparity tunings, as well as be able to support the addition of
motion-detection circuitry to attain a system of cells which are tuned for a particular combination
of disparity, spatial frequency, and temporal frequency (Qian, 1994).

An AER architecture sends the addresses of the locations of events from a sender chip to a
receiver chip in real-time via an asynchronous high speed digital bus. Typically the address of
a sender chip's pixel (the event) is sent via the AER bus to e�ect an event on a pixel in the
receiver chip. This digital address can be changed in mid-path to manipulate how the sender
chip's events map on to the receiver chip's computational circuitry. Both sender and receiver chips
consist of arrays of parallel circuitry which perform various useful functions. Since the AER bus
is approximately 3 orders of magnitude faster than the analog circuitry's bandwidth (MHz versus
kHz), it is feasible to send large numbers of (near) simultaneous events across the bus. The e�ect is
the low-powered, highly parallel connection between layers of computational circuitry. This scheme
can be extended to more than 2 layers by adding one or more transceivers between sender and
receiver, which perform functions of both. Our design is a four layered scheme comprising four
unique custom analog VLSI chips.

7.2 Description of Architecture

Let us start with two (left and right) sender chips: analog CMOS chips consisting of light-sensitive
pixels which communicate their activity via the AER bus. Refer to Fig. 7.1. Each pixel is an
adaptive photocell as used in Higgins and Shams (2000). These sender chips should have some
�high� resolution, perhaps 100x100 pixels, but we shall only consider a one-dimensional array of
pixels for simplicity. These chips send their data to a pair of transceiver chips which perform the
required spatial (Gabor-like) �ltering. These �lters send their events to a transceiver complex-cell
chip which contains the disparity-energy computation circuitry. This data is sent via, for example,
some address-remapping EEPROMs or FPGAs. These EEPROMs remap the addresses of the
sender chips to shift and subsample the images, the e�ect of which is the cell's disparity tuning
and the quadrature-phase relationship between pairs of spatial �lters. The complex-cell transceiver
chip's pixels each contain one �complex cell� � a circuit which sums and squares four incoming
signals to produce a disparity energy output (Fig. 2.1). The receptive �eld width with which a
complex-cell chip works is determined cooperatively by the spatial �lters and by the remapping
done by the EEPROMs.

For a chosen RF and disparity tuning � = �l � �r, the number of pixels corresponding to
90° and � are computed. These are de�ned as p90 and p�, respectively, and are used as subscripts
to indicate pixel o�set from X0. Refer to Fig. 7.2. The EEPROMs are programmed so that for
a given �center� pixel located at X0, say, in the left sender chip, the events from that X0 pixel
and of the corresponding �-o�set pixel (Xp�) in the right sender chip are both sent as �left� and
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Figure 7.1. Hardware architecture block diagram overview. CMOS imagers feed into spatial

(Gabor-like) �lters. The �ltered images are passed to the complex-cell chip via EEPROM mapping

which shifts and downsamples the image for the appropriate spatial-frequency and disparity tuning.

The complex-cell transceiver then passes its information to a receiver which generates motor control

signals. All interchip arrows are AER bus lines.
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�right�, respectively, to the X0 pixel in the complex-cell transceiver. The events from pixels Xp90

and Xp90+p� are sent as left and right, respectively, to pixel X1 in the transceiver, where X1 is
adjacent to X0. This has the e�ect of downsampling the sender chip an appropriate amount for
the RF chosen. After this remapping has taken place, each pixel in the complex-cell transceiver
has four inputs � two spaced �° apart from its �own� sender pixel, and two spaced �° apart from a
pixel 90° away.

A cell in the complex-cell transceiver will perform disparity energy computations using its own
left and right signals, as well as the left and right signals from a cell adjacent to it. This adjacent cell
contains the left and right signals of the quadrature-phase pixel 90° away. Adjacency in the complex
cells simpli�es greatly the on-chip routing requirements. Since the cells in a row of a complex-cell
transceiver are interconnected and share disparity tuning, they are independent of cells in other
rows and so any row can be programmed (via the EEPROMs) for any legal disparity without regard
to other rows. Thus, if the downsampling leaves enough "free" cells in the complex-cell transceiver,
those cells can be tuned for a disparity other than that for which the "used" cells are tuned, thus
utilizing more of the chip. Since the cells in any row all share the same tuning, the rows can be
organized in any manner, such as by interleaving them. The number of disparities for which a single
complex-cell transceiver can be tuned is equal to the ratio of downsampling between the spatial
�ltering transceiver and the complex-cell transceiver. Bear in mind that the subsampling must be
in both x and y dimensions for this to work. The architecture can be further augmented by adding
more spatial �lters tuned for di�erent frequencies, and by adding more complex-cell transceivers in
the case that a single chip cannot provide the number of disparity tunings desired. Of course a new
complex-cell transceiver must be added for each new spatial-frequency. Refer to Fig. 7.3.

A smaller RF results in fewer choices of disparity tuning, but also allows for the detection of
disparity in high spatial frequency images. The high-resolution limit of course is a system tuned
for zero disparity in the highest spatial frequency allowed by the resolution and spacing of the
sender pixels. Thus the complex-cell transceiver should have as many pixels as the senders and
spatial-�ltering transceivers, even though for any usable (nonzero) disparity tuning, not all of them
would be used. The upper limit on disparity is the 90° pixel distance for a given RF width; a
wider disparity tuning requires a wider RF. A cell tuned for 90° will alias heavily, so this degree of
tuning is not recommended. By downsampling we also get the added bene�t of adjacent receiver
pixels sharing information, thus alleviating problems with arbitrary connectivity in the complex-cell
transceiver.

At this point the shift-and-downsample blocks must send to the complex-cell transceiver an
event from pixel X0 for each disparity for which the transceiver is tuned. Since the X0 pixel is
not shifted, its events get sent to the multiple transceiver rows which require it. This generates
the need for a one-to-many mapping between the spatial-�lter transceiver and the complex-cell
transceiver. Rather than shifting only the right pixel �°, we can shift both the left and right pixels
�

2
° in opposite directions. This not only improves the spatial symmetry of the response to disparity

stimuli, but also alleviates the shift-and-downsample block from having to service a one-to-many
request as would be required with a multiple-disparity complex-cell transceiver receiving multiple
events from X0. The advantage is that inexpensive EEPROMs, which can only deliver a one-to-one
or a many-to-one mapping between addresses, can still be used, rather than having to use custom
digital logic such as an FPGA.

7.3 Spatial Filtering

So far we have not discussed the Gabor functions. The discussion in Chapter 2 suggests that
�perfect� Gabor functions are not required for achieving disparity sensitivity, however some �ltering
is required. By not �ltering (spatially smoothing) the pixels as we downsample them, we run the
risk of aliasing some region of high spatial frequency (via Nyquist in the space domain). We also do
not tune the system for vertical lines as the Gabor �lters in this research do, a requirement which
informal experiments have shown is critical for proper functioning of disparity measurement. It is
possible to perform two-dimensional spatial �ltering by including circuitry in the sender chips (Shi,
1999), but this greatly limits the system's scalability and �exibility. Therefore, the �ltering here
has been shown to take place outside the sender chips, where multiple spatial frequencies may be
�ltered. The spatial �ltering circuits described by Shi are not perfect Gabor �lters, but instead
they exhibit a Laplacian rather than a Gaussian exponential decay modi�ed by a sinusoid.

This architecture suggests to use only even �lters at all spatial locations, rather than even
and odd �lters as is possible with the Shi circuits. This is another simpli�cation, although the
architecture certainly does not prevent one from adding odd �lters in addition to the even ones.
By implementing only even �lters we are not approximating the disparity tuning or the quadrature
phase by changing the phases of the sinusoids, as has been discussed in this thesis, but by shifting



72

X
p 90

X
p

φ
X

90
+

p
φ

X
0

φ
φ

φ

()2 ()2

()2 ()2

()2 ()2

+
+

+

0
X

1
X

+

2
X

3
X

()2()2

Pi
xe

l
L

ig
ht

D
im

en
si

on
C

hi
p 

bo
un

da
ry

C
om

pu
ta

tio
n 

bl
oc

k
Si

gn
al

tr
an

sc
ei

ve
r

fi
lte

ri
ng

Sp
at

ia
l

C
M

O
S 

Im
ag

er
Se

nd
er

C
M

O
S 

Im
ag

er
Se

nd
er

L
ef

t

R
ig

ht
φ

Left

Right

Left

Right

Left

Right

Right

Left

O
ut

O
ut

O
ut

O
ut

do
w

ns
am

pl
e

Sh
if

t

90
90

90
o

o
o

an
d

C
om

pl
ex

ce
ll

tr
an

sc
ei

ve
r

(E
E

PR
O

M
s)

Figure 7.2. Hardware architecture block diagram detail. This �gure shows how the sender chips

are �ltered and subsampled to approximate disparity tuning and to e�ect the quadrature-phase

nature of the disparity energy circuitry. Each pixel in the complex-cell transceiver consists of an

(a+ b)
2
+(c+ d)

2
type of circuit which calculates the energy of its inputs. A pixel in this transceiver

uses input from cells in the sender which are �° apart, as well as input from its adjacent pixel which

provides similarly-spaced input from pixels 90° away.
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Figure 7.3. Expanded hardware architecture block diagram. This �gure shows additional spatial

�ltering and disparity-tuned transceivers, connected via additional shift-and-downsample blocks.

The outputs of the complex-cell transceivers still combine in the �nal receiver chip.
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Figure 7.4. Complex cell circuit diagram. This circuit implemements the function k ja+ bj
2
+

k jc+ dj
2
, where a; b; c; d and k are left_x0, right_xpphi, left_xp90, right_xp90phi, and a normal-

izing factor. Each pair of currents is summed at its common node via KCL (Kircho�'s Current Law)

to create a+b and c+d. The lower three transistors in each half-circuit implement an absolute-value
function on these currents, generating currents ja+ bj and jc+ dj. The upper �ve transistors in

each half circuit perform a normalized squaring of these currents, generating the output currents

k ja+ bj
2
and k jc+ dj

2
which get summed at their output via KCL to yield k ja+ bj

2 + k jc+ dj
2
.

the Gaussian and the sinusoid the required amount for the tuning. This has been shown in Ohzawa
et al. (1997) not to be the correct model for a disparity-tuned cell (in cats), but for small disparity
tunings, the approximation may be made (Qian, 2000). In fact, the contention between this phase-
shift vs. position-shift model has been in the neurobiological literature for some time, and it is not
clear that it has been entirely resolved. Care must be taken to tune the Shi �lters to match the
desired RF of the cell so they match the tuning programmed into the EEPROMs.

7.4 Circuit Level Implementation

Fig. 7.4 shows a proposed circuit diagram for a cell in the complex-cell transceiver. It is based on
circuitry used in an implementation of the Adelson-Bergen motion algorithm (Higgins and Korra-
pati, 2000), which computes motion energy similarly to the disparity energy used here (Fig. 2.1).
The current-mode translinear circuit consists of 16 MOSFETS operating in their subthreshold re-
gion. Each half of the circuit operates on either the even or odd left and right input signals. A
summation of two current signals is performed via Kircho�'s Current Law (KCL) by simply sharing
a node between the two signals. The signal names correspond to the pixel locations in Fig. 7.2. The
bottom portion of each half-circuit creates an absolute value of the sums of the incoming signals, so
as to allow bidirectional inputs. This absolute value is fed into the top portion of the circuit, which
performs a squaring operation, multiplied by some factor k determined by Vnorm. The outputs of
both half-circuits are summed together at the output node.



75

7.5 Output

The outputs of the complex-cell transceivers feed into a �nal receiver chip which sums the outputs
of the complex cells. This chip will sum across spatial frequency for each disparity tuning at each
spatial location; in e�ect, it implements the sum-of-columns of the �lterbank. The receiver chip will
also incorporate the integrative and thresholded controllers for vergence and horizontal tracking.
The output of the chip will be a position signal for the left and right cameras.

7.6 Future Work
Another point of future work is the integration of the disparity-based vergence and tracking system
with motion-sensitive cells, or with cells that are tuned for both disparity and motion (Qian, 1994).
By combining these two, a much more complete early-vision system can be developed, which bases
horizontal tracking on motion rather than on disparity energy, and which opens the possibility of
creating a complete early-vision system, including vergence, target-tracking, saccades (short, quick
movements of the eyes), and VOR (vestibular-ocular-re�ex). This system would also be able to use
depth and motion to avoid obstacles, navigate, etc., if coupled to higher-level control structures.
The separation of the imagers and the spatial �lters allows a large scale system in which motion
and disparity cells can be tuned for a wide array of spatial frequencies, and in which the outputs
of the spatial �lters can be shared between the disparity and motion cells.
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Chapter 8

SUMMARY AND CONCLUSION

The purpose of this project was to develop a system to control the angular positions of a pair of
stereoscopic cameras for use in a mobile robot. Speci�cally, the goal was to control the vergence
of the cameras and to perform horizontal tracking of objects. Other researchers have achieved
these tasks by various means, but this author did not �nd any who used a biologically-inspired
representation of image disparity to do so.

Disparity energy has been found to be the mechanism used in cats for the perception of depth,
and it was this energy that has been used to control the cameras. An ad-hoc hill-climbing algorithm
based on an 8-state �nite state machine was initially developed to verify that disparity energy could
indeed be used to control vergence. This solution did not always �nd the maximum point, and
proved rather fragile once it did. A phase-based horizontal tracking method was also explored, but
this also proved overly sensitive to shadows and intensity gradients in the image, and was therefore
quite unusable. Neither of these solutions was biologically-inspired.

A biologically-inspired �lter-bank method of disparity-energy-based vergence control was then
developed. The control system uses population encoded complex cells which give weight to move-
ment in various dimensions. The cells feed into �complex� controllers which integrate position error
over time to control the motion of the cameras. These controllers are parallel and independent,
suitable for use in a �subsumption architecture�-based robot, wherein the computational models are
small in scope and predictably reactive to achieve more complex behavior than would be possible
using classical robotic programming techniques.

We have seen via a series of experiments that the system can estimate reasonably well and very
consistently the position of an idealized stimulus (the vertical bar) placed in front of stationary
cameras, and to be able to track the stimulus with the cameras. This tracking allows the stimulus
to move in the complete range of the system's �eld of view and to maintain the stimulus centered
left-to-right and within the allowable fusible region in depth.

Finally, an architecture to realize this system in analog VLSI hardware has been introduced and
discussed. This hardware continues the biologically-inspired theme of low-power, highly parallel
computation, and brings the possibility of a robust, advanced vision system closer to the domain
of mobile robotics.

During the investigation of the use of disparity energy in controlling the cameras, several prob-
lems were encountered, including phase aliasing and the monoscopic response problem. Two so-
lutions to the phase aliasing problem were introduced, one of which was implemented, and one
solution to the monoscopic response problem was introduced and implemented. The error in the
physical platform was estimated and determined to be caused by slack and imperfections in the
servo motors and pushrods, and by the discrete nature of the servo controller. Finally, as neuro-
science has contributed to engineering by providing us with models for cells in cat visual cortex,
this engineering project provides for neuroscience a prediction of neural arrangement as a solution
to the phase aliasing problem.

A GUI was developed to observe the status of the system and to control the cameras manually
as needed for the experiments. The GUI also served as a �common sense� indicator to let the
experimenter know if the system was stuck in a sidelobe and if the system was working overall.

The use of disparity energy has been shown to be su�cient and useful for the control of stereo-
scopic vergence, and its use in horizontal tracking has been shown as well. By implementing a
population-encoded disparity-energy-based control system in analog VLSI hardware, a robust, real-
time, early-vision system for mobile robots can be developed.
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Appendix A

FINITE STATE MACHINE

Here we describe the 8-state �nite state machine used in the single-cell hill-climbing vergence
method. Please refer to the bubble diagram in Fig. 4.2. Since the energy may be low-pass �ltered
with each cycle or require other preprocessing steps, and since the cell update is called separately
from the state machine (i.e., the state machine does not call the cell update when it needs a new
energy value; �rst the cell energy is updated, then the state machine is called) an auxiliary state
is created which is called one or more times between real states. Keep in mind therefore that the
energy in any one state is the energy derived from the vergence movements of the previous states.
Also keep in mind that any vergence �increment� used in this pseudo-code refers to a movement in
the current direction (either positive or negative) with the current increment distance.

There are three hysteretic windows which are constantly changing, and which provide thresholds
above and below a locally-relevant maximum value for the system to decide to move or not. These
are the local hysteretic window (LHW), recomputed with each move, the local-maximum hysteretic
window (LMHW), recomputed each time a local maximum is found, and the global-maximum
hysteretic window (GM HW), recomputed each time a local maximum is reached (after having
been found).

A.1 State Machine Pseudocode

Clear global maximum, thresholds, etc.

Set vergence increment distance to some value > 0.

Set vergence increment direction to +1.

state 999 (auxiliary state):

Low-pass filter energy (running average).

Update global maximum energy if required.

If energy < global hysteretic window (GMHW) then

Set vergence increment distance to some value > 0.

state 0 (initialize sweep):

Start global scan by initializing to some min. sweep vergence angle.

Goto state 1.

state 1 (sweep):

Record energy for this vergence angle.

If energy > all previous energies, then mark this vergence angle.

Increment vergence.

If vergence is at maximum sweep angle then

If multiple-sweeps desired and number of sweeps not been then

Reverse vergence increment direction.

Else

Goto state 2.

Else

Goto state 1

state 2 (jump to best known angle):

Jump to vergence angle which gave the most energy from state 1.

Goto state 3.

state 3 (begin maximum search, compute threshold):
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If vergence increment distance != 0 then

Increment vergence.

Compute a hysteretic window (LHW) as a percentage of energy.

Goto state 4.

state 4 (compare energy change to previous LHW):

If vergence increment distance != 0 then

If energy < LHW then (energy decreased with movement)

Change direction (going the wrong way).

Increment vergence three times (to overcome motor slack).

Recompute LHW with current energy.

Goto state 4.

Else if energy > LHW then (energy increased with movement)

Increment vergence (keep climbing!).

Recompute LHW with current energy.

Goto state 5.

Else if energy is within LHW then (energy did not change much)

Increment vergence (keep looking for a slope).

Goto state 4.

state 5 (compare energy change to previous LHW, again):

If vergence increment distance != 0 then

If energy < LHW then (last vergence was better than this one)

Recompute LHW with current energy.

Compute LMHW with local maximum energy (from state 4).

Mark energy used in state 4 as local maximum.

Mark vergence used in state 4 as best local vergence.

Change direction (go back and find local maximum).

Increment vergence.

Goto state 6.

Else (keep hill climbing)

Increment vergence.

Goto state 5.

state 6 (go back looking for local maximum):

If vergence increment distance != 0 then

If energy < LMHW then

If vergence - best local vergence > 3 then

(Missed the local max by a few jumps, search again.)

Change direction.

Goto state 4.

Else

Increment vergence.

Set LHW around current energy.

Goto state 6.

Else

(Local maximum has been achieved. Assume it's global max.)

Set global maximum to current energy.

Set local maximum to current energy.

Set GMHW around current energy.

Set LMHW around current energy.
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Set LHW around current energy.

Set vergence increment value to 0 (so it does not move)

Goto state 4.
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Appendix B

CCD TO CARTESIAN SPACE

The majority of the disparity and complex cell discussion has taken place solely within CCD Space.
This information needs to be converted to real-world Cartesian-space so we can measure how well
the system works. We must use the vergence and cyclopean angles, along with the camera geometry
to convert x in pixels to X in millimeters, and to convert d in pixel-disparity to Z in millimeters.
The equations used for this conversion are rather tedious and not very relevant to the scienti�c
contribution of this thesis, so they and their derivations appear here. Also see Woods et al. (1993)
for another perspective, and refer to Fig. B.1 for a geometric visualization of the setup.

According to the diagram, b is the baseline distance between the nodal points (the points around
which the cameras pivot and through which all rays are drawn; point NL and NR in the diagram);
bl and br are the left and right components of b; �c is the cyclopean angle (the average left-to-right

angle of the two cameras, �c �
�L��R

2
); �v is the vergence angle (the angle between the centerlines

of the two cameras �v � �L + �R); �L (�R) is the angle of the left (right) camera toward the
origin relative to the line L1-L2 (R1-R2); Xccd (Y ccd) are the horizontal (vertical) dimensions of
the CCD imaging plane in pixels; Xlc (Xrc) is the horizontal distance between the centerpoint of
the left (right) CCD imaging plane to the target's projection through the nodal point on that plane
in millimeters (the target is point B in Fig. B.1); lpx (rpx) is the left (right) x-pixel coordinates;
lpy (rpy) is the left (right) y-pixel coordinates; xres (yres) is the number of pixels across the whole
imaging plane in the x (y) dimension for both cameras; �nally f is the focal length of the lenses.
When lpx and rpx are both the same then the target is at the horopter, and when they are both
zero, the target is at the axial intersection, point A in the diagram. The entire goal of this project
is to move point A so it coincides with point B. The value of Y does not really interest us since we
are only doing horizontal disparity and tracking, but it is included for completeness.

Consider \AL1B. This is equal to �l, which is tan�1
�
Xlc

f

�
. Therefore

\L2L1B = �L + tan�1
�
Xlc

f

�
(B.1)

Similar reasoning yields

\R2R1B = �R + tan�1
�
Xrc

f

�
(B.2)

Now consider 4BL1R1.

tan (\L2L1B) =
bl

Z
=
X + b

2

Z
(B.3)

and

tan (\R2R1B) =
br

Z
=

b
2
�X

Z
(B.4)

so that

tan (\L2L1B) + tan (\R2R1B) =
bl + br

Z
=

b

Z
(B.5)

) Z =
b

tan (\L2L1B) + tan (\R2R1B)
(B.6)
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Figure B.1. Geometric setup for conversion from CCD space to Cartesian space. This is a plan

view of the stereoscopic camera arrangement.
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Subtracting Eq. B.4 from Eq. B.3, solving for X and substituting Eq. B.6 yields

X = (tan (\L2L1B)� tan (\R2R1B)) �
Z

2
(B.7)

=

�
tan (\L2L1B)� tan (\R2R1B)

tan (\L2L1B) + tan (\R2R1B)

�
�
b

2
(B.8)

Substituting Eqs. B.1 and B.2 into Eq. B.6 yields

Z =
b

tan
�
�L + tan�1

�
Xlc

f

��
+ tan

�
�R + tan�1

�
Xrc

f

�� + Zoffset (B.9)

and

X =
Z

2
� tan

�
�L + tan�1

�
Xlc

f

��
� tan

�
�R + tan�1

�
Xrc

f

��
(B.10)

where Zoffset is the distance from the edge of the stimulus table to the origin of the camera setup
and

�L =
�v

2
+ �c (B.11)

�R =
�v

2
� �c (B.12)

Xlc =
�
�lpx+

xres

2

� Xccd
xres

(B.13)

Xrc =
�
rpx �

xres

2

� Xccd
xres

(B.14)

Y lc =
�
lpy �

yres

2

� Y ccd
yres

(B.15)

Although we are not using the Y dimension, it is still possible to derive its value from the CCD
data:

Y =
Z (Y lc+ Y rc)

2f
(B.16)

where

Y rc =
�
rpy �

yres

2

� Y ccd
yres

(B.17)

Fig. B.2 shows a mapping of CCD space to Cartesian space for several values of vergence and
cyclopean angle.

A preliminary test was run to see if the above equations worked, and for the most part they
did, except there was too much o�set error in the Z direction, and a gain error in the X direction.
At �rst this was thought due to an error in the size of the CCD itself, which is quite small (3.6mm
in the horizontal direction), but it was di�cult to account for the data with this allowance. In
addition to a measurement (modeling) error, it was discovered that one of the assumptions made
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Figure B.2. Mapping CCD space to Cartesian space. Plot A shows an example of mapping CCD

space to Cartesian space using several values of vergence and cyclopean angle. The grid within

each section is the x-d (CCD) space. The parameters used were b=70mm, f=5mm, Xccd=3.6mm,

yielding an FOV of 35 degrees. Each section is 110x40 pixels, spaced 22 and 5 pixels in the x

and d directions, respectively, to reduce clutter. The cyclopean angles are -40, 0, and 40 degrees

from left to right, and the vergence angles are 15 and 30 degrees. Note that although the sections

do not intersect each other in the plot for clarity, in fact the cyclopean and vergence angles can

be continuous, and thus a continuum of sections exists. Note that the Z depth represented by

disparity changes not only with vergence and cyclopean angle (sections), but also within a section,

particularly at small vergence angles. The pixel dimensions within the top middle section and the

vergence and cyclopean angles are shown.
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in the geometry was incorrect for the cameras: The nodal point and the pivot point of the cameras
in the drawing are the same. The real system, however, has an o�set in the Z direction between
the nodal point and the pivot point, resulting in a baseline between nodal points b which shortens
with increasing vergence angle. The new equations to determine X and Z are the same as the old,
except for b and zoffset which instead of being constant, are now

bnodal = bpivot � �v sin(znodal) (B.18)

zNewOffset = zoffset � �v cos(znodal) (B.19)

where bnodal is the distance between nodal points, bpivot is the distance between pivot points, znodal
is the distance between the nodal and pivot points along the camera's optical axis, and zNewOffset

is the new distance between the center of the nodal points and the center of the pivot points.
Although the discovery of this error in assumption was inspired by funny data, it is not clear that
the discrepancy had much of an e�ect. The distance between the pivot and nodal points is so small
as to render the correction negligible, and thus only the original equations were used in the data
shown in Chapter 6.
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