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Abstract

Motion detection is a very important elementary task performed on the visual input received from
eyes in both vertebrates and invertebrates like insects. In this work we describe a VLSI implemen-
tation of a biologically inspired elementary motion detector. This sensor is based on the Adelson-
Bergen algorithm, designed to model the response of a primate cortical complex cell. We �rst
describe the model in detail and then explain the circuit level details of the implementation of the
model. Results from the characterization of the chip are presented. Next we describe two appli-
cations based on this motion sensor. The �rst application is an active tracking system using the
sensor. The second application is the design of a chip, RoaCh (Robot on a Chip). RoaCh is a
monolithic implementation of the motion detector along with a control system to navigate a robot
whose objective is to run away from moving targets surrounding it. We also describe the details
of the modeling of an early visual pathway of the �y, which is thought to be involved in motion
computation.



Chapter 1

Introduction

The pursuit of making an intelligent machine able to mimic a biological system has been with us
since we started building engineering systems. There has been a tremendous amount of research
during the past few decades to build a system as intelligent and agile as its biological counterpart.
During the same time there have been a lot of advances in the �eld of neuroscience, leading to new
insights into the way biological systems process sensory information.

Most biological systems have a brain, which is the central complex computational structure. It
has a huge number of locally connected neurons performing massive parallel computations on sensory
information it receives to control the entire system e�ciently. The microprocessors available today
perform very complex tasks such as number crunching problems, search and logic problems with great
precision at remarkable speeds. However, they fail to impress us when they try performing even
the simplest of the activities the brain does with ease, such as controlling navigation in a cluttered
environment. Their performance only becomes worse when the complexity of the task increases, such
as object tracking or recognition. Clearly there is a fundamental di�erence of processing between the
brain and a microprocessor. There is a need for us to understand how the brain does things to build
such an e�cient system. During the late 1980's Carver Mead started a new paradigm of realizing
neural systems in silicon integrated circuits. These chips could �see� or �hear� (Mead, 1989). This
new paradigm called Neuromorphic Engineering has grown over the past few years in building analog
VLSI circuits that can perform more complex tasks ranging from sensory information processing for
autonomous robotics to learning.

Vision provides some of the most important sensory information on which biological systems rely
heavily. The human brain has about 1011 neurons (Koch, 1999), and it has been observed that more
of the brain is devoted to vision than to any other sensory function (Zigmond et al., 1999). Vision is
a very complex sensory function and is used in a variety of tasks such as motion detection, focus of
expansion estimation, stereo disparity measurement, color estimation, object tracking, recognition
and even more high-level tasks. It plays a crucial role not only in primates, but also in invertebrates
like �ies, which have only about 340,000 neurons (Strausfeld, 1976). Visual processing needed for
complex tasks does not happen all at one place. As visual input is a fairly extensive amount of data,
transferring it all the way up through the ascending pathways in the brain would require a lot of
neurons, leading to increased size and power consumption. To deal with this, the brain breaks down
the complex tasks into more elementary tasks which are performed at lower levels in the ascending
pathways, and the results are passed on to the higher levels. This is an appropriate approach for
engineers trying to implement neural systems on silicon. We can make integrated circuits that
compute such elementary tasks and combine these for obtaining di�erent complex behaviors.

One such elementary task performed on visual input is motion computation. Motion information
is used extensively to perceive the environment around us. Some of the functions that use motion
information include: (1) tracking location of moving objects; (2) egomotion (determining one's own
movement); (3) warning danger of other moving things; (4) determining what the scene in front of
us is like (e.g., for �gure-ground detection).

Motion forms a key component even in insects. Flies heavily rely on motion information for
various behaviors like gaze control, �ight stabilization, deceleration, tracking (Egelhaaf et al., 1988),
approach or landing (Borst, 1990), and others. This is the reason that motion computation becomes
one of the elegant visual tasks that can be used independently in realizing various functions. It can
also be used in conjunction with other tasks like disparity in realizing systems which can be very
autonomous and more like their biological counterparts.

Motion computation has been done before both in software and hardware, and there are many
ways to detect visual motion. Broadly these methods can be classi�ed into feature-tracking or token-
based algorithms and intensity-based algorithms. The sections below explain the general principles
of motion computation with emphasis on hardware implementations of motion computation.
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1.1 Feature-Tracking Algorithms

These kind of algorithms can again be classi�ed into two kinds based on the token or the feature
they try to track.

The �rst kind are the spatial feature tracking algorithms. These algorithms are especially popular
in software-based methods. In these algorithms, spatial features like an edge or a particular region
in an image sequence are �rst identi�ed. Then the immediate sequence of the image is checked for
the previously identi�ed spatial feature. This essentially is a correspondence problem-i.e., to match
the previously identi�ed spatial feature in the second image sequence. Once the correspondence is
obtained, the velocity can be computed in various ways, as shown in (Barnard and Thomson, 1980;
Anandan, 1989; Little et al., 1988) and others. Though this method is popular in software based
methods because of the discrete nature involved in processing, it has also been implemented in
hardware. Etienne-Cummings et al. demonstrate such a sensor (Etienne-Cummings et al., 1997)
where they compute optic �ow based on the disappearance of an edge at a pixel and its reappearance
at a neighboring pixel. Similarly, Barrows describes a two dimensional optical �ow measurement
sensor (Barrows, 1998) based on timing the movement of a feature across the visual �eld.

The second kind of feature-tracking algorithms use temporal features for tracking. These al-
gorithms look for change in intensity of the image at each pixel to compute optic �ow. Hardware
implementations of these algorithms typically have temporal edge detectors at their �rst stage which
respond to an abrupt change in light intensity at that pixel with a spike/pulse. Kramer demonstrates
the use of a FTI (facilitate, trigger and inhibit) algorithm using three adjacent pixels to calculate
the time of travel (Kramer, 1996). Similarly, there has been a lot of work using the FS (facili-
tate and sample) algorithm for computing velocity (Kramer et al., 1995; Higgins and Koch, 1997;
Kramer et al., 1997; Sarpeshkar et al., 1996). Higgins et al. demonstrated a hardware implementa-
tion of two algorithms, ITI (inhibit, trigger and inhibit) and FTC (facilitate, trigger and compare)
for computing two-dimensional local direction of motion (Higgins et al., 1999).

1.2 Intensity-Based Algorithms

Intensity based algorithms are again divided as gradient based and correlation based algorithms.
Gradient based methods compute velocity from the spatial and temporal derivatives (gradients)

of the image intensity. This approach for the two dimensional case was proposed by Horn and
Schunck (Horn and Schunck, 1981). There have been at least two hardware realizations of this
model (Tanner and Mead, 1986; Deutschmann and Koch, 1998). However, these models are very
sensitive to noise.

Correlation based algorithms are by far the most successful methods realized in hardware for
motion computation. In these methods, motion is computed from correlating the response of a
pixel and the delayed response of its neighbor. The popular correlation based algorithms are the
ones proposed by Hassenstein and Reichardt in 1956 for explaining the optomotor response in �ies,
by Barlow and Levick to explain direction selectivity in rabbit's retina (Barlow and Levick, 1965),
and the Adelson-Bergen algorithm (Adelson and Bergen, 1985). The Adelson-Bergen model is often
cited as the underlying model of a primate cortical cell (Qian et al., 1994; Nowlan and Sejnowski,
1994; Heeger et al., 1996). Van Santen and Sperling proposed an elaborated Reichardt detector
(Van Santen and Sperling, 1985) and show that the Adelson-Bergen model is equivalent to an
elaborated Reichardt model. There have been many hardware realizations of these correlation based
algorithms. In (Delbrück, 1993), the author realizes correlation based motion computation using
delay lines. The Barlow-Levick algorithm has also been realized in hardware (Benson and Delbrück,
1991; Horiuchi et al., 1991). The Reichardt detector has been implemented in silicon in di�erent ways.
First was an implementation using translinear current mode circuits (Andreou and Strohbehn, 1990;
Harrison and Koch, 1998). Similarly Harrison showed two VLSI implementations of the Reichardt
model, one based on a current mode design and the other on a voltage mode design (Harrison, 2000).
The Adelson-Bergen algorithm has also been implemented in hardware (Higgins and Korrapati, 2000)
and is described in more detail later in this thesis. A large scale version of the AB-model has been
implemented on a general-purpose analog neural computer (Etienne-Cummings et al., 1999). In this
work the Adelson-Bergen algorithm was chosen as the motion algorithm since it is more e�cient
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to implement in VLSI as it can be realized using fewer circuits when compared with other motion
algorithms. Hence it is more e�cient in terms of layout area.

1.3 Applications of Motion Computation

Motion computation is used extensively in real time machine-vision application tasks. Traditional
methods of real-time machine vision applications use a CCD camera as the front end and a processor
in the back end. These are quite popular and are used in a lot of applications. However, they are
power intensive and require many resources. An attractive solution for this problem is to use parallel
image-processing architectures on silicon. That is, these chips would combine the photo detection
and processing capabilities on the same chip, making them more e�cient in terms of power, space
and cost. We now look at some of the work done in past to realize such applications related to our
current work.

Indiveri demonstrated a vision chip which selectively detects and tracks the position of the feature
with highest spatial contrast in the visual scene (Indiveri, 1999). Motion and velocity measurement
has been used in smooth pursuit tracking (Cummings et al., 1996). Velocity sensors have also been
used to estimate the heading direction and to compute the time of contact (Indiveri et al., 1996).
Higgins and Koch describe a sensor (Higgins and Koch, 1999), in which they show how the direction
of local motion, along with the location of singular points in the visual �ow �eld, can be used for ego-
motion. Cummings et al. demonstrate a navigation application in which the robot avoids obstacles
during line following (Cummings et al., 1998). However, this is a hybrid system in which they
use a vision chip that detects edges and a micro controller for implementing the actual navigation
algorithms. Barrows et al. demonstrate an application in which they compute optic �ow from motion
detectors and use it to steer a glider away from walls to avoid collisions (Barrows et al., 1999). The
author of this thesis was also involved in two projects based on visual input. The �rst application
was to detect a high-contrast portion of a scene and track it using visual motion information. In
this application the sensor was mounted on a pan-tilt head, and the motion information from the
sensor was used to control the pan-tilt head for tracking. The second application was based on a
vision sensor which computed the position of a target in the scene. The sensor was mounted on a
small robot, Khepera (K-Team Inc Online, 2001), and the sensor controlled the robot for tracking
the target. More details about these two projects can be found in the report of the 2000 Workshop
of Neuromorphic Engineering (Cohen et al., 2000). The use of visual motion detection is not just
limited in tracking and other machine vision applications. Motion computation is also heavily used
in MPEG coding, intelligent transportation systems (ITS) and others. A traditional method of
motion computation in camera and processor based methods is the block matching technique. In
this technique, each new frame of data is partitioned into several blocks to detect motion vectors.
These blocks are then matched with a reference block from the previous frame. Once a best match is
found, the position displacement between the current block and the reference block gives the motion
vector, from which the velocity can be estimated. However, this algorithm is computationally
intensive. There have been several dedicated custom hardware implementations of this traditional
block matching algorithm and other variants of it (Moshnyaga and Tamaru, 1997; Fang et al., 2000;
Wang et al., 1994; Zhang and Chi-Ying, 1997).



Chapter 2

Biological Motion Algorithms

In this chapter we explain biological methods of motion computation. First we discuss the Reichardt
detector based on �ies (Hassenstein and Reichardt, 1956). Then we describe the Adelson-Bergen
algorithm (Adelson and Bergen, 1985), which is the underlying algorithm of our motion energy sensor
(to be described in more detail later in Chapter 4). The Adelson-Bergen algorithm is meant to model
motion computation in the primate cortical cell. Both Reichardt detector and the Adelson-Bergen
algorithm fall under the class of correlation based algorithms for motion computation.

One of the �rst models of motion computation was proposed by Hassenstein and Reichardt in
1956 to explain the optomotor response in �ies. The Reichardt detector is shown in Figure 2.1(a).
It has two subunits in it. Each subunit as shown in Figure 2.1(b) correlates the input from a
photoreceptor with a delayed input from it's neighboring photoreceptor, separated by a distance
��. Each subunit can be thought of as if it were tuned to motion in a particular direction (left
or right). The Reichardt detector takes the di�erence of the subunits to get the opponent motion
output.

We now explain the Reichardt detector in more detail. Let the input signal be a sinusoidal
grating in one-dimension. Let !t be it's temporal frequency and !x be it's spatial frequency. If the
mean luminance of the signal is I , then we can write the signals from the two photoreceptors as
follows:

A = I +�I sin (!t � t+ !x � x)

B = I +�I sin (!t � t+ !x � x� !x��)

Where !x�� corresponds to the phase di�erence introduced because of the separation, �� between
the two photoreceptors. The sign of the phase delay introduced depends on the direction of the
stimulus, it is positive if moving in one direction and negative if moving in the opposite direction.
The signals are then taken through the temporal �lters. The outputs from the temporal �lters are
given by:

A0 = I + F (!t)�I sin (!t � t+ !x � x+ �(!t))

B0 = I + F (!t)�I sin (!t � t+ !x � x+ �(!t)� !x��)

Where F (!t) is the amplitude and �(!t) is the phase of the temporal �lters. For simplicity we
consider here the case when these two �lters are identical. In hardware implementations, the input
image to the photoreceptors, A and B are high pass �ltered before they go into their next stages.
This is also the case in �ies. The photoreceptor's outputs are high pass �ltered to remove the
mean luminance value. They adapt to the background luminance and thus report only changes in
luminance to the next stage in the visual pathway. Taking this into consideration, before going into
the correlation stage where we compute A0B and AB0, we remove the DC term (mean luminance
term), I from the above four signals. The output from the correlation stage is given by:

A0B = (�I)2F (!t) sin (!t � t+ !x � x+ �(!t)) sin (!t � t+ !x � x� !x��)

AB0 = (�I)2F (!t) sin (!t � t+ !x � x) sin (!t � t+ !x � x+ �(!t)� !x��)

We can now write the opponent motion output of the Reichardt detector, A0B�AB0. After simplify-
ing the di�erence, A0B�AB0 using the trigonometric identity cos(A�B)�cos(A+B) = 2 sinA sinB,
the �nal opponent motion output is given as follows:

O = (�I)2F (!t) sin (�(!t)) sin (�!x��) (2.1)
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(a) Reichardt Detector
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(b) Subunit of a Reichardt detector

Figure 2.1. (a). The Reichardt detector. The input image pattern moves across the photoreceptors

denoted as PR, separated by ��. The direct input from a photoreceptor is correlated with the

temporally �ltered input from the adjacent photoreceptor (shown as TF). This temporal �ltering

introduces a delay in the photoreceptor output. The outputs from these correlation stages are

subtracted to get an opponent motion output. Temporal averaging can be done after the correlation

stage, before the subtraction to get a mean output. (b) The right subunit of the detector. The

Reichardt detector has two component subunits, tuned to motion in opposite directions (right and

left) and the outputs of these subunits are subtracted to get the motion output.
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We can see that the above opponent motion output can distinguish stimuli moving in its preferred
direction from stimuli moving in its null direction. In case of a one dimensional sensor, the preferred
direction is the direction of the stimulus when it moves across the pixels in the positive direction and
the null direction is the direction of the stimulus when it moves in the negative direction across the
pixels. From Equation 2.1, we can see that if the sign of the phase delay introduced is positive, then
the opponent motion output is positive and if the sign of the phase delay is negative, the opponent
motion output is negative. A more elaborate derivation of the Reichardt detector, which includes
the cases when the subtraction stage is unbalanced (i.e., the case when the opponent motion output
is given by A0B � gAB0, where g 6= 1), and for non identical temporal �lters in the two sub units is
given in (Egelhaaf et al., 1989).

We now discuss the Adelson-Bergen model. Before we explain the Adelson-Bergen algorithm,
let us look at motion in space-time and see how we can interpret it. Figure 2(a) shows a bar in
two dimensions, x and y moving along the x direction in time. Since the bar is constant in the y
direction, let us consider the same bar in the x-t space as shown in Figure 2(b). We can see that
as time proceeds, the bar drifts along the x-axis as shown. Now, consider the bar moving in the x-t
space as shown in Figure 2(c). In this �gure we plot the bar moving with �ve di�erent velocities.
The extreme left plot shows the bar moving with a velocity of �2 and the extreme right plot shows
it move with a velocity of +2. We can see that motion can be thought as orientation in space
and time and so if we can �nd the orientation in space-time, we can �nd the velocity of the image
pattern. Thus the problem of motion computation can be transformed into a problem of orientation
detection in space and time. For computing orientation, we can use oriented �lters in space and
time. This is the premise of the Adelson-Bergen model, and they propose the use of such oriented
�lters in quadrature phase to compute phase independent motion energy.

The model of the detector is shown in Figure 2.3. The input image is fed into the detector. The
two receptive �elds are displaced in position. f1(x) and f2(x) are two spatial �lters. The outputs of
these are passed through two di�erent temporal �lters h1(t) and h2(t). One of these �lters delays (or
low passes) the input signal more than the other. By combining the signals as shown in the model,
we obtain four separable outputs, A;B;A0; B0. Once we obtain the four separable responses, they
are combined as shown to obtain oriented linear responses, (A � B0); (A0 + B); (A + B0); (A0

� B).
Each of these is then squared as shown. Then they are summed to obtain the oriented energy,
(A�B0)2+ (A0 +B)2 and (A+B0)2+(A0

�B)2. These two are subtracted to obtain the opponent
motion energy 4(AB0

�A0B) as shown in the model. From here on we call this model the Elementary
Motion Detector, EMD.

Adelson-Bergen propose the use of linear spatial and temporal �lters which are in quadrature
for the EMD. They suggest the use of gabor �lters in quadrature as the spatial �lters. These are
plotted in Figure 2.4(a), and can be expressed mathematically as the following:

fs1(x) = e(
�x

2

2��2
)
� cos(!x � x)

fs2(x) = e(
�x

2

2��2
)
� sin(!x � x)

And they suggest the use of the second and third derivatives of gaussians as temporal �lters. These
are plotted in Figure 2.4(b) and are of the form:

ft1(t) = (kt)3 � e�kt
2

�

�
1

3!
�

(kt)2

(3 + 2)!

�

ft2(t) = (kt)5 � e�kt
2

�

�
1

5!
�

(kt)2

(5 + 2)!

�

Figure 2.4(c) shows a spatio-temporal plot of the model. It plots the opponent energy from the
model at various spatial and temporal frequencies.

To appreciate the working of the EMD, let us consider the case of a pure sinusoidal grating
pattern in one dimension as input to the EMD. So, the input stimulus can be written as:

I(x; t) = I � sin(!t � t+ !x � x)
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(a) Bar in X-Y space

X

t
(b) Bar in X-t space

X

t

V=-2 V=-1 V=0 V=1 V=2

(c) Motion as orientation in X-T

Figure 2.2. Interpreting motion: (a) A bar in X-Y space, which drifts along the X-axis in time.

(b) The same bar plotted in the X-t space, we can see the bar progressing in time. (c) A space-time

plot of the bar moving with di�erent velocities. We can see that each velocity can be thought of as

a particular orientation in space-time. Reproduced without permission from (Adelson and Bergen,

1985).
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Figure 2.3. The Adelson-Bergen motion detector. Reproduced without permission from (Adelson

and Bergen, 1985).
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Figure 2.4. Spatial and Temporal �lters in the Adelson-Bergen model. (a) Spatial Gabor �lters

in quadrature. (b) Temporal �lters in quadrature. (c) Spatio-Temporal plot of the �nal opponent

energy of the model. The opponent energy is plotted for spatial frequencies on the X-axis versus

temporal frequencies on the Y-axis. We can see that the the model responds best to a particular

spatio-temporal frequency to which it is tuned for and the response decreases at other frequencies.

The simulations use � = 4:8, !x = 0:6 and k = 9.
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where !t is the temporal frequency of the grating and !x is the spatial frequency of the grating.
After the image passes through the spatial �lters, since the input is a pure sinusoid, we get the
following (Haykin, 1996):

fleft(t) = jfs1j � I � sin (!t � t+ !x � x+ �s1(!x))

fright(t) = jfs2j � I � sin (!t � t+ !x � x+ �s2(!x))

Where jfs1j and jfs2j are the magnitudes of the two spatial �lters and �s1(!x) and �s2(!x), are
the phases of the spatial �lters and come as a result of applying the impulse response of the two �lters
on the input. From here on we use �s1 and �s2 for representing �s1(!x) and �s2(!x) respectively.
fleft and fright are now passed through the two temporal �lters, ht1 and ht2 respectively. We get
the following four separable responses:

A(t) = jht1j � jfs1j � I � sin(!t � t+ !x � x+ �s1 + �t1(!t))

A0(t) = jht2j � jfs1j � I � sin(!t � t+ !x � x+ �s1 + �t2(!t))

B0(t) = jht2j � jfs2j � I � sin(!t � t+ !x � x+ �s2 + �t2(!t))

B(t) = jht1j � jfs2j � I � sin(!t � t+ !x � x+ �s2 + �t1(!t))

Where jht1j and jht2j are the magnitudes of the two temporal �lters and �t1(!t), �t2(!t) come as a
result of applying the impulse response of the two �lters on the input signals, fleft(t) and fright(t).
From here on we represent �t1(!t) as �t1 and �t2(!t) as �t2. From the model we see that the �nal
opponent motion energy is 4(A � B0

� A0
� B). Substituting for A;B;A0 and B0, we can write the

�nal opponent motion energy as follows:

O = 4 �

2
664
jfs1j � jfs2j � jht1j � jht2j � I2 �

�
sin(!t � t+ !x � x+ �s1 + �t1)�

sin(!t � t+ !x � x+ �s2 + �t2)

�
�

jfs1j � jfs2j � jht1j � jht2j � I2 �

�
sin(!t � t+ !x � x+ �s2 + �t1)�

sin(!t � t+ !x � x+ �s1 + �t2)

�
3
775

Using the identity 2 � sin(A) � sin(B) = cos(A�B)� cos(A+B), we can write the above equation
as follows:

O = 2 � jfs1j � jfs2j � jht1j � jht2j � I2 �

2
664

cos(�s1 � �s2 + �t1 � �t2)�

cos(2 � !t � t+ 2 � !x � x+ �s1 + �s2 + �t1 + �t2)�

cos(�s2 � �s1 + �t1 � �t2)+

cos(2 � !t � t+ 2 � !x � x+ �s1 + �s2 + �t1 + �t2)

3
775

) O = 2 � jfs1j � jfs2j � jht1j � jht2j � I2 �

�
cos((�s1 � �s2) + (�t1 � �t2))�

cos((�s1 � �s2)� (�t1 � �t2))

�

Again using the same identity 2 � sin(A) � sin(B) = cos(A � B) � cos(A + B),we can write the
above equation as follows:

O = 4 � I2 � (jfs1j � jfs2j sin(�s1 � �s2))| {z }
Spatialcomponent

� (jft1j � jft2j sin(�t1 � �t2))| {z }
Temporalcomponent

If the spatial and temporal �lters are quadrature pairs for the EMD tuned for that particular
spatial frequency !x and temporal frequency !t , ie.,
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�s1(!x)� �s2(!x) =
�

2

�t1(!t)� �t2(!t) =
�

2

Then we can see that the Adelson-Bergen model achieves phase independency. Since sin(�=2) = 1,
the sinusoidal terms become unity and the �nal opponent motion energy is given by:

O = 4 � jfs1j � jfs2j � jft1j � jft2j � I2

It is thought that the primate cortical cell has a bank of such EMD's, each tuned to a particular
spatial and temporal frequency. We now consider the case when two di�erent sinusoidal gratings
(i.e, with di�erent spatial and temporal frequencies), are given to such single EMD unit. This case
resembles more closely to the real world visual input. The image input to the EMD is,

I(x; t) = I1 � sin(!t1 � t+ !x1 � x) + I2 � sin(!t2 � t+ !x2 � x)

After the image passes through the spatial �lters, we get the following, by using the de�nition
of linear �lters:

fleft(t) =

�
jfs1j � I1 � sin (!t1 � t+ !x1 � x+ �s1(!x1))+

jfs1j � I2 � sin (!t2 � t+ !x2 � x+ �s2(!x2))

�

fright(t) =

�
jfs2j � I1 � sin (!t1 � t+ !x1 � x+ �s3(!x1))+

jfs2j � I2 � sin (!t2 � t+ !x2 � x+ �s4(!x2))

�

From here on, we use �s1 for �s1(!x1), �s2 for �s2(!x2), �s3 for �s3(!x1) and �s4 for �s4(!x2).
|fs1| and |fs2| are the magnitudes of the two spatial �lters and �s1, �s2, �s3, �s4 are phases which
come as a result of applying the impulse response of the two spatial �lters on the input. These are
now taken through the temporal �lters to obtain the four separable responses shown below:

A(t) =

�
jh11j � jfs1j � I1 � sin (!t1 � t+ !x1 � x+ �11 + �s1)+

jh12j � jfs1j � I2 � sin (!t2 � t+ !x2 � x+ �12 + �s2)

�

A0(t) =

�
jh21j � jfs1j � I1 � sin (!t1 � t+ !x1 � x+ �21 + �s1)+

jh22j � jfs1j � I2 � sin (!t2 � t+ !x2 � x+ �22 + �s2)

�

B(t) =

�
jh11j � jfs2j � I1 � sin (!t1 � t+ !x1 � x+ �11 + �s3)+

jh12j � jfs2j � I2 � sin (!t2 � t+ !x2 � x+ �12 + �s4)

�

B0(t) =

�
jh21j � jfs2j � I1 � sin (!t1 � t+ !x1 � x+ �21 + �s3)+

jh22j � jfs2j � I2 � sin (!t2 � t+ !x2 � x+ �22 + �s4)

�

�11, �12, �21 and �22 come as a result of applying the impulse response of the temporal �lters on
the input. From the model, the �nal opponent motion energy is 4(A � B0

� A0
� B0). Substituting

for A;B;A0 and B0, and after a lot of simpli�cation using the trigonometric identity described
previously, the �nal result for the opponent motion energy is given by:
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O =

2
6666666666666666664

I1�I2�jfs1j�jfs2j�h11�h21
2

�

�
cos((�11 � �21) + (�s1 � �s3))�

cos((�21 � �11) + (�s1 � �s3))

�
+

I1�I2�jfs1j�jfs2j�h12�h21
2

�

0
BB@

cos (!dt � t+ !dx � x+ (�12 � �21) + (�s2 � �s3))�

cos (!st � t+ !sx � x+ (�12 + �21) + (�s2 + �s3)) +

cos (!st � t+ !sx � x+ (�12 + �21) + (�s1 + �s4))�

cos (!dt � t+ !dx � x+ (�12 � �21) + (�s4 � �s1))

1
CCA+

I1�I2�jfs1j�jfs2j�h22�h12
2

�

�
cos((�12 � �22) + (�s2 � �s4))�

cos((�22 � �12) + (�s2 � �s4))

�
+

I1�I2�jfs1j�jfs2j�h22�h11
2

�

0
BB@

cos (!dt � t+ !dx � x+ (�22 � �11) + (�s4 � �s1))�

cos (!st � t+ !sx � x+ (�11 + �22) + (�s1 + �s4)) +

cos (!st � t+ !sx � x+ (�22 + �11) + (�s2 + �s3))�

cos (!dt � t+ !dx � x+ (�11 � �22) + (�s3 � �s2))

1
CCA

3
7777777777777777775

Where we use (!t2 � !t1) = !dt; (!t2 + !t1) = !st; (!x2 � !x1) = !dx; (!x2 + !x1) = !sx. If this
EMD has a quadrature pair of spatial and temporal �lters tuned for the frequencies of !x1 and !t1
we can write the following:

�s1 � �s3 =
�

2

�11 � �21 =
�

2

Substituting these in the above equation, we obtain the following:

O =

2
6666666666666666664

I1�I2�jfs1j�jfs2j�h11�h21
2

�

�
cos(�

2
+ �

2
)�

cos(��
2
+ �

2
)

�
+

I1�I2�jfs1j�jfs2j�h12�h21
2

�

0
BB@

cos (!dt � t+ !dx � x+ (�12 � �21) + (�s2 � �s3))�

cos (!st � t+ !sx � x+ (�12 + �21) + (�s2 + �s3)) +

cos (!st � t+ !sx � x+ (�12 + �21) + (�s1 + �s4))�

cos (!dt � t+ !dx � x+ (�12 � �21) + (�s4 � �s1))

1
CCA+

I1�I2�jfs1j�jfs2j�h22�h12
2

�

�
cos((�12 � �22) + (�s2 � �s4))�

cos((�22 � �12) + (�s2 � �s4))

�
+

I1�I2�jfs1j�jfs2j�h22�h11
2

�

0
BB@

cos (!dt � t+ !dx � x+ (�22 � �11) + (�s4 � �s1))�

cos (!st � t+ !sx � x+ (�11 + �22) + (�s1 + �s4)) +

cos (!st � t+ !sx � x+ (�22 + �11) + (�s2 + �s3))�

cos (!dt � t+ !dx � x+ (�11 � �22) + (�s3 � �s2))

1
CCA

3
7777777777777777775

From the above equation, we see that the EMD output has a phase independent component with
a �xed mean value (�rst term, �I1 � I2 � jfs1j � jfs2j � h11 � h21), a component which arises because
of the EMD being tuned to only one particular spatio-temporal frequency (third term), and two
other components at the sum and di�erence of temporal and spatial frequencies. So, when a real
world stimulus is given to an EMD tuned for a particular spatio-temporal frequency, there would
be a ripple riding on a mean value. Though we derived the case for a stimulus with two di�erent
temporal and spatial frequencies, we can extend this derivation for the case of stimuli with many
di�erent spatial and temporal frequencies in it. This is the reason why the EMD output would give
a ripple riding on a mean value when a single bar is given as the stimulus. as an edge can be thought
as a sum of pure sinusoid inputs with di�erent frequencies in it. Also, we derive the results for a one
dimensional case, this derivation can be easily extended for 2-dimensional stimulus (in both x and y
directions) which is omitted here, as it is exactly a similar derivation but with an added component
in the y direction.
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In this chapter we described two biologically inspired motion detection algorithms, the Reichardt
detector and the Adelson-Bergen algorithm. Though these algorithms realize motion detection
through di�erent computations, these two detectors are mathematically equivalent as shown in
(Van Santen and Sperling, 1985). The Reichardt detector is well suited to implement in VLSI (Har-
rison, 2000), as it doesn't have too many computations in it. But, the hardware implementation of
the Reichardt detector needs two four quadrant multiplier circuits for computing the multiplication.
The four quadrant multiplier circuit has a large transistor count. The Adelson-Bergen algorithm
has more computations in it than the Reichardt detector. However, hardware realization of the
Adelson-Bergen algorithm is not very complicated if we keep the signals in the current mode instead
of voltage mode. We explain in more detail in Chapter 4 as to how we can make other approxima-
tions in the Adelson-Bergen model to achieve an e�cient VLSI realization of the Adelson-Bergen
algorithm for motion detection.



Chapter 3

Modeling of Visual Motion Detection Circuits in Flies

In the previous chapter we talked about an Elementary Motion detector and discussed two well-
known EMDs, the Reichardt detector and the Adelson-Bergen detector. EMDs derived from insect
visual system are based on observations from the giant motion-sensitive tangential neurons in the
lobula plate of a �y. These neurons correspond to the �nal opponent motion output stage discussed in
the EMDs of previous chapter. Until recently there have been no recordings from neurons projecting
onto the motion-sensitive tangential neurons. The EMDs proposed thus far are only from theory
and are not based on anatomical observations. In this chapter we describe some of our modeling
e�orts based on the recordings from neurons a�erent to these tangential neurons.

Before going into the details of modeling, let us �rst examine some essential features an EMD
should possess for it to be direction selective. Direction selectivity implies that an EMD can distin-
guish motion in the direction it is tuned for (preferred direction) from the motion in the opposite
direction (null direction). There are some general requirements for a directional selective motion
detector (Franceschini et al., 1989; Borst and Egelhaaf, 1989). These are:

� Two inputs are needed for motion detection. In order to determine motion there have to be
di�erent points in space which sample the visual input. With just one sampling point (or
photoreceptor) we cannot distinguish an edge passing from left to right from an edge moving
from right to left.

� The signals from the sampling points should undergo asymmetric linear �ltering. That is, one
of the signals should be low pass �ltered (or delayed) more than the other.

� A non linear interaction between the two signals is needed, i.e., the two signals should be
combined in a non linear fashion (like multiplication) before we can identify motion.

� Time averaging of the resulting signals from the non linear interaction is performed in neurons,
though this might not be a necessary requirement in models.

Figure 3.1 shows the visual system of a �y, which contains the EMD circuit in it. The �gure
shows the main areas in the nervous system of the �y relevant to motion computation. In �ies
motion computation happens at a very early stage in the visual pathway. The various stages past
retina are the lamina, medulla and then the lobula and lobula plate. The motion-sensitive tangential
cells are in the lobula plate. Motion computation is thought to happen before it, in the previous
stages. Figure 3.2 shows the wiring diagram that contains the neurons in the early visual pathway of
the �y that are thought to participate in motion detection (N. Strausfeld, personal correspondence).
Intracellular recordings from neurons early in the wiring diagram have only been reported recently
(Douglass and Strausfeld, 1995; Douglass and Strausfeld, 1996; Douglass and Strausfeld, 1998). Our
modeling is based on these recordings.

Let us �rst look at the HS cells which are at the bottom of the wiring diagram. HS (horizontally
selective) cells are in the lobula plate and they pool inputs from the dendrites of the bushy T-cells, T4
and T5. HS neurons are spiking. They have a steady �ring rate and depolarize with stimulus moving
in its preferred direction and hyperpolarize with stimulus moving in the null direction (Franceschini
et al., 1989). As shown in Figure 3.2, these HS neurons pool input signals from a large number of
T5 neurons and are sensitive to motion. We can conclude that these are computing a global sum of
motion, which is computed earlier by individual EMDs.

The T5 neurons whose dendrites originate in the outermost stratum of the lobula provide the
input to the HS neurons. The recordings from the T5 neurons (Douglass and Strausfeld, 1995) show
that the response of T5 neurons resembles the response of the HS neurons (i.e., they depolarize
to stimulus in its preferred direction and hyperpolarize to stimulus in its null direction). This
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Figure 3.1. Schematic of the visual system of dipteran insects.
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Figure 3.2. Proposed anatomical model for an EMD in the early visual pathway of �ies. PR is

a photoreceptor. The various neurons are, amacrine neuron, AM; type 2 lamina centrifugal cell,

C2; large monopolar cell, L2; centripetal neuron, T1; transmedullary cell Tm1; bushy T cell, T5;

horizontally selective cell, HS.
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fully opponent response to stimulus in its preferred and null direction indicates that T5 acts as a
�subtraction� stage.

The wiring diagram shows the main input to the T5 cell as the Tm1 neuron. The recordings of
Tm1 neurons (Douglass and Strausfeld, 1995) show that Tm1 does show direction selectivity, but
not in level shifts, instead it shows variations in its frequency response. Response to a stimulus in
the null direction was at slightly higher peak to peak amplitude than the response to the stimulus
in its preferred direction and the frequency of the response was twice the frequency of the stimulus.
The response to a stimulus in the preferred direction had the same frequency as that of the stimulus
and a slightly smaller overall amplitude. As Tm1 shows a change in frequency, we can conclude that
Tm1 is acting as the �non-linear� stage in the EMD.

Going up the model we see two neurons, T1 and L2, making excitatory synapses onto the Tm1
neuron. T1 neurons are not post synaptic to the photoreceptors. But, they obtain their inputs
in lamina from intermediate neurons. They receive input from the amacrine cells, which are post
synaptic to the photoreecptors. The recordings from these T1 neurons (Douglass and Strausfeld,
1995), show that they do not distinguish motion direction, but show hyperpolarizing �uctuations at
the frequency of the input stimulus for both the preferred and null directions. So, T1 can act as an
intermediate stage in the EMD.

The large monopolar cell, L2, has been studied extensively before (Laughlin, 1989). L2 is directly
post synaptic to the photoreceptor, and is thought to perform three di�erent transformations on the
incoming visual input. They are inversion, ampli�cation and high pass �ltering. The input light
intensity can vary about �ve orders in magnitude from bright to dark but the L2 neurons have only
a restricted range of voltage (about 60mv) to encode this intensity of light. L2 uses the trick of
neural adaptation to cope with this. By this adaptation mechanism it encodes only the changes
in illumination from the background illumination. It high pass �lters all the background intensity
and ampli�es just the change in intensities. Thus when the photoreceptors are initially adapted to
darkness and when a small light is presented to the photoreceptors as stimulus for a certain time and
then removed, L2 responds with an initial �hyperpolarizing on transient� and then a �depolarizing
o� transient�. It responds the other way for a dark bar over an illuminated background. This
characteristic response has been very well modeled in hardware in (Liu, 1998).

The other two neurons in the wiring diagram are the amacrine neuron and the C2 neuron.
Recordings from the amacrine cell (Douglass and Strausfeld, 1996) show that these neurons exhibit
transient depolarizations at the temporal frequency of the grating. Also, these responses exhibit
direction-dependent phase shifts. These neurons can thus be thought to perform some kind of
delaying, as these receive synaptic inputs from adjacent photoreceptors. The last neuron in the
model, the type 2 lamina centrifugal cell, C2, is di�erent from all the previous neurons in the sense
that it has an excitatory synapse onto the L2 neuron in lamina and an inhibitory synapse to the
L2 neuron of the neighboring column. The recordings from C2 neuron (Douglass and Strausfeld,
1995) show that it exhibits hyperpolarization for motion and has small �uctuations at the contrast
frequency of the grating. Thus these two neurons, L2 and C2 can be thought to play the vital role
of linking the two adjacent visual columns to perform motion computation.

Based on all these observations, Figure 3.3 shows an elementary motion detector based on the
motion detection circuits in �ies. We can observe that the model has all the salient features necessary
for motion computation as described earlier in the chapter. The photoreceptors are denoted as PR1
and PR2 in the model. The response from the photoreceptors is delayed through the temporal
�lters denoted as TF1 and TF2 in the model. These delay stages can be thought to occur through
the amacrine and T1 cells as explained previously. Next are the six summation stages, which can
be thought to occur at the synapses of L2, T1 and C2. Following these, there are four non-linear
stages. These four stages can be though to occur at the four synapses between the L2 and Tm1, T1
and Tm1 cells. Tm1 cells compute the non-linearity as explained previously when describing the
response of Tm1 cells. The �nal opponent motion output is obtained though a subtraction which
could be computed by the T5 cell.

Simulation results
We show results from simulating the proposed model in �gures 3.4(a) and 3.4(b). Figure 3.4(a)
corresponds to the case when the stimulus is given in the preferred direction and Figure 3.4(b)
shows the results when the stimulus is given in the null direction. In both �gures, the �rst plot



27

TF1 TF2

+ ++ + ++

+

+

PR1 PR2

+

+

-

-

+ +
+

-
+

+
+

( )2 X X ( )2

+

+ +

+

Opponent Motion

Figure 3.3. Proposed model for an EMD based on motion detection circuits in �ies.
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(a), shows the response of the two photoreceptors versus time. The darker trace corresponds to the
response of PR1 and the lighter trace corresponds to the response of PR2. We can see that in the
preferred direction, the stimulus �rst reaches PR1 and then reaches PR2 after a delay. And in the
null direction it reaches PR2 before it reaches PR1. The third plot (c), in both �gures shows the
response after the temporal �ltering stage. The darker trace corresponds to the response of TF1
and the lighter trace corresponds to the response of TF2. Similarly in both �gures, the plots (b)
correspond to the �nal opponent energy. We can see that the model is clearly direction selective.
The response for stimulus in the preferred direction is positive and the response for stimulus in the
null direction is negative.
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Figure 3.4. In both �gures, the top plot (a) shows the response of the photoreceptors. The

darker trace shows the response of PR1 and the lighter trace corresponds to the response of PR2.

The bottom plot (c) shows the response of the temporal �ltering stage, again the darker trace

corresponds to the response of TF1 and the lighter trace corresponds to the response of TF2. The

middle plot (b) shows the response of the �nal opponent motion output. We can see that the model

is clearly directional selective.

This work done by us has been pursued further and the elementary neuronal model has been
modi�ed to explain motion detection in �ies. The proposed new model can be found in (Higgins et
al., 2001).



Chapter 4

VLSI Implementation of the Adelson-Bergen Algorithm

In this chapter we explain the hardware architecture and circuitry for a VLSI implementation of
the Adelson-Bergen algorithm. The basic architecture we use can be understood from Figure 4.1.
The �rst stage is the photodetection stage. In this stage the input from the image is projected onto
an adaptive photodetector circuit. This adaptive photodetector circuit detects only changes in the
image intensities and works for a very wide input range of intensities. The spatial �ltering is done
using a di�user network which approximates a Gabor like spatial �ltering. Next stage is the temporal
�ltering stage as shown. We use a voltage mode low pass �lter for computing the delayed version
of the input signals. The four separable signals obtained are combined as proposed by Adelson and
Bergen in the original model. The next stage is the non-linearity stage. Adelson and Bergen propose
the use of squaring the input signals at this stage. Computing the square of signals that can go
both positive and negative involves more circuitry. So, instead of computing the square directly,
we compute the square by �rst rectifying the input signal and then taking a square of the recti�ed
signal. This is more e�cient in transistor count. Further stages in the model, are additions and
subtractions. By wiring the signals together, sums and di�erences are achieved through Kircho�'s
current laws. The chip was fabricated in a standard 1:2�m CMOS process through MOSIS and the
MOSFETS involved in the computational stages of the model operate in the subthreshold region
keeping the power to a minimum. As subthreshold operation has an exponential I�V characteristic
for the MOSFET, the computations shown in the architecture are much easier to implement. We
now describe the circuits used in the architecture in more detail.

4.1 Photodetection and Spatial Filtering

The photodetectors we use are the Delbrück adaptive photoreceptors (Delbrück and Mead, 1996).
The adaptive photoreceptor has a high gain for transient light signals that are centered around a
background adaptation point but has a low gain for steady background luminations. It encodes input
light logarithmically and has a wide dynamic range of operation for input irradiance. The circuit of
the adaptive photoreceptor is shown in Figure 4.2(a). Mn and Mp form an inverting ampli�er. Mfb

is a feedback transistor and Madap is an adaptive element. C1 and C2 form a capacitive divider.
Let us consider the case when there is a small change in light falling on the photodiode. This leads
to a small increase in the photocurrent, i from the background current, Ibg . This increase tries to
pull the voltage Vp down. This causes the voltage Vprout to go up Aamp times, where Aamp is the
ampli�cation factor of the inverting ampli�er Mn �Mp. This increase in Vprout is coupled back

onto the gate of the feedback transistor Mfb through the capacitive divider with a gain of C2
C1+C2

,

which is about 0.0916 in our case. This pulling up of the gate of Mfb pulls up on the source of Mfb,
keeping the photoreceptor voltage, Vp nearly clamped. Thus a small change in the light intensity
is ampli�ed by the inverting ampli�er after which it adapts back to the background. The adaptive
element, Madap acts as a very high resistance path for small variations in the input image intensity.
But, it acts as a low resistance path for large variations in intensity. Thus small transients are
coupled through the capacitive divider. The circuit adapts to large variations in the input image
through the low resistance path provided by the adaptive element. Detailed analysis of the adaptive
photoreceptor circuit and its noise properties are explained in (Delbrück and Mead, 1996).

Spatial �ltering of the input image should ideally be performed by Gabor �lters in quadrature as
described in Chapter 2. But in actual hardware implementation we did not implement Gabor �lters.
Instead, the Gabor pair is approximated using adjacent photoreceptors in the array along with
di�user networks, which lead to an antagonistic center-surround spatial impulse response (Liu and
Boahen, 1996), similar to that of a Gabor function. The width of these spatial impulse responses can
be adjusted using di�user networks, which are shown in Figure 4.2(b). These di�user networks can
be turned on by using the bias voltages Vg and Vh. In this �gure VfbLeft and VfbRight represent
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Figure 4.1. Architecture used in VLSI implementation of the Adelson-Bergen algorithm. The
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di�user networks. Temporal �ltering is realized through voltage mode low pass �lter. Non-linearity

is achieved through recti�cation and squaring circuits. The summing and subtraction stages are

performed using current mirrors and wires, as signals are kept in current mode.
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the feedback voltage (Vfb), in the adaptive photoreceptor of the left and right pixels. Similarly
VpLeft and VpRight represent the photoreceptor voltages of the left and right pixels respectively.
By adjusting the bias voltages Vg and Vh we can control the width of the impulse responses of the
spatial �lters to approximate the quadrature Gabor �lters. Although these di�user networks are in
place, we did not �nd the need to turn them on to get the exact Gabor function shape to obtain
direction selectivity. As long as the mean DC value from the signals is removed the sensor has a
good performance. We explain later in Section 4.4 how we achieve this.

VddVdd

Vprbias

Vprout

C2C1

Mfb

Mn

Mp

Vfb

Vp

Madap

Ibg+ i

(a) Adaptive photoreceptor

Vg

Vh

Vfb Left Vfb Right

VpRightVpLeft

(b) Di�users

Figure 4.2. (a) The adaptive photoreceptor circuit (b) Di�users that are coupled with the pho-

toreceptor for implementing spatial �ltering.

4.2 Temporal Filtering

The delayed photoreceptor signal needed in the model is obtained by using a voltage mode low pass
�lter as shown in Figure 4.3. The delay is obtained by the phase lag inherent in a �rst order low
pass �lter. The circuit is a transconductance ampli�er with a capacitive feed back element as shown.
The output of the adaptive photoreceptor, Vprout is given as the input to the transistor M1 and the
output, Vprfilt is the low passed photoreceptor voltage. We now show how this circuit acts as a
low pass �lter. The output current of the di�erential transconductance ampli�er is given by (Mead,
1989):

Clpf �
dVprfilt

dt
= Ib � tanh

�
�(Vprfilt � Vprout)

2

�

Where, Clpf is the capacitance of the feedback capacitor. Ib is the bias current in the di�erential
pair, which can be adjusted by the bias voltage V� . � is the back gate coe�cient, whose value is
process dependent and was found to be equal to 0.8. For small signals, tanh can be approximated
by its argument as follows:

Clpf � s � Vprfilt =
Ib � �

2
� (Vprfilt � Vprout)
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Rearranging the above equation, we can write the transfer function for the circuit as follows:

Vprfilt

Vprout
=

1

� � s+ 1

We can see that the circuit acts a �rst order low pass �lter with a time constant � , given by,

� =
2 � Clpf

Ib � �

The time constant of the �lter can be adjusted by changing the bias current in the circuit. The
capacitor in the circuit, Clpf was implemented with a MOSCAP in parallel with a poly1-poly2
parallel plate capacitor, with a combined capacitance of about 0.89 pF.

Vτ

Vdd

Vprout

Vprfilt

M4M3

M1 M2

Mbias

Clpf

(a) Circuit

−

+Vprout

Vprfilt

Clpf

(b) Symbolic representation

Figure 4.3. (a) Circuit to perform temporal low pass �ltering on the photoreceptor signals. (b)

Symbolic representation of the same circuit.

4.3 Non-Linearity

As explained previously, the original Adelson-Bergen model proposes a squaring of the incoming
signals at this stage. But these signals can go both positive and negative. Although we can design
circuits that can compute the square of such signals, they have a large transistor count. In order to
over come this, we �rst fully rectify these signals by using an absolute value circuit and then perform
the squaring.

The absolute value circuit is shown in Figure 4.4(a). This circuit is inspired by (Bult and
Wallinga, 1987), where they propose it for above threshold operation. To understand this circuit
let us �rst consider an input bi-directional current Iin at node N1. When Iin �ows into the node
N1, it �ows into node N2 through the NFET M1. When Iin �ows out of the node N1, it is taken
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through the current mirror M2-M3 and �ows into the node N2 again. Thus we can see that an input
bi-directional current at node N1 is converted into a unidirectional current at node N2. Current
Irect always �ows out of N2.

The squaring circuit is shown in Figure 4.4(b). The recti�ed current from the absolute value
circuit �ows into the node N3 and the squared current, Isq �ows into the node N5. Let the voltage
at node N3 be Va and the voltage at node N4 be Vb. This circuit utilizes the exponential I � V
relation of MOSFET operating in the subthreshold region to realize the squaring as shown below.

The currents �owing into the transistors M4, M5 and M6 neglecting the early e�ect can be
written as:

IM4 = I0e
��(Va�Vb)

V
T

IM5 = I0e
��V

b

V
T

IM6 = I0e
��Va

V
T

Where VT is the thermal voltage (VT = kT=q = 25mV , at room temperature). � is the back gate
coe�cient. But, IM4 = IM5 = Irect and IM6 = Isq . We can rearrange the above three equations as
follows:

Irect = I0e
��(Va�Vb)

V
T = I0e

��Va

V
T � e

�(��V
b
)

V
T (4.1)

Irect = I0e
��V

b

V
T (4.2)

Isq = I0e
��Va

V
T (4.3)

Using Equations 4.2 and 4.3 in 4.1, we can draw the relation between the two currents, Isq and Irect
as follows:

Isq =
I2rect
I0

(4.4)

Thus we see that the circuit performs a squaring operation, scaled by a factor of I0. However,
we should note that the squaring circuit is not normalized and can operate above threshold if the
current level is high after squaring. We describe a normalized squaring circuit in Chapter 7 that
overcomes this problem.

4.4 Di�erential Current Representation

Before the current signals go into the non linear stage, we need to make sure that they do not
have any o�set current in them. A previous version of the implementation of Adelson-Bergen model
(Higgins and Korrapati, 2000) had biases that had to be manually adjusted to subtract the o�set
currents. In this version we use a di�erential current representation scheme to get rid of the o�set
currents eliminating the need of extra biases in the circuit. Thus this scheme is self-compensative
relative to the older version.

We can understand the di�erential current representation scheme from Figure 4.5. In Figure (a),
we show how we obtain the four current signals, A, A0, B, B0 from voltage inputs of two adjacent
pixels, 1 and 2 in the regular scheme. From the undelayed photoreceptor voltage Vprout of pixel 1
and 2, we obtain A and B. Similarly, the delayed current signals, A0 and B0 are obtained from the
low pass �ltered photoreceptor input, Vprfilt of pixel 1 and 2 respectively.

Figure 4.5(b) shows the generation of signals using the di�erential current representation. In this
scheme the two voltage signals, Vprout and Vfb are used to obtain the undelayed current signals, A
and B. Similarly Vprfilt and Vfb are used to obtain the delayed current signals, A0 and B0. Notice
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Figure 4.4. (a) Absolute value circuit used to rectify the incoming bi-directional current, Iin. The

output current, Irect is recti�ed and �ows out of the node N2. (b) The squaring circuit. It receives

the recti�ed current, Irect as the input and the output is a squared current, Isq at the node N5.
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that Vfb is actually a long term average of the scaled down version of Vprout. To obtain the undelayed
current signals A and B, we take the di�erence of current signals generated by Vprout and Vfb as
shown in Figure 4.5(b). By doing this we do not lose the transient nature of the signal, but the
DC o�set current is cancelled. Thus we obtain an o�set free current signal which can be fed into
the non-linearity stage. Similarly the �gure also shows the generation of the delayed signals, A0 and
B0. Notice that ideally we need to take the di�erence between Vprfilt and the delayed feed back
voltage (Vfb) to obtain the delayed signals, A0 and B0. But that would involve one more temporal
�lter to obtain Vfbdelayed. In the actual implementation we do not do that as it would cost us
more transistors. So, we approximate Vfbdelayed to Vfb and take the di�erence as shown in the
�gure. Another thing to be observed in this scheme is the signal, Vfb. Ideally, we need to take the
di�erence between Vprout and a scaled down version of Vprout to obtain the signals A and B. Vfb is
not just a scaled down version of Vprout, but a long-term average of the scaled down version of Vprout.
So, it does not have an identical frequency response as that of Vprout. We need additional circuitry
to obtain an exact scaled down version of Vprout, which we cannot a�ord. So, we approximate the
scaled down version of Vprout to Vfb and take the di�erences as shown.

4.5 Readout Circuitry

Each pixel in the two dimensional array gives out an opponent motion current and other intermediate
signals. In order to read these signals from the pixel we need to scan these signals from each pixel.
We use horizontal and vertical scanning circuits to do this. The scanner circuits can be seen in the
layout of the chip shown in Figure 4.7. The scanner circuits in the chip are based on the scanners
proposed in (Mead and Delbrück, 1991). The scanners operate on a single-phase clock going from
Vdd to ground. The design of both vertical and horizontal scanner is similar. Each scanner has a shift
register in it. The shift register has �ip �ops in it to store a binary state. Each �ip �op selects a row
or a column. A logic high in a �ip �op of a horizontal scanner selects the particular row. Similarly a
logic high in a �ip �op of a vertical scanner selects the particular column. By continuously shifting
bits from one �ip �op to the other, we can select adjacent pixels continuously and read signals o�
them. We can also select a particular row and a column by sending the appropriate number of
clock pulses. By selecting a particular row and a column we can read data from the same pixel
continuously. More details about the circuitry involved can be found in (Mead and Delbrück, 1991).

4.6 Characterization
Using the circuits discussed in the previous sections and connecting the signals based on the AB
model, we fabricated a motion sensor. The complete schematic of a pixel is shown in Figure 4.6.
The layout of the chip is shown in Figure 4.7. Figure 4.8 shows the layout of a pixel detailing all
the circuitry explained previously.

Before we describe the characterization data from the chip in detail, let us �rst look at the
expected response from the sensor. If the input to the sensor is a sinusoidal grating with an amplitude
A, contrast C, spatial frequency fs, temporal frequency ft and if the grating has an orientation of
� with respect to the preferred orientation of the sensor, then the input stimulus can be written as:

I(x; y; t) = A � (1 + C � sin(2�ft � t+ 2�fs(cos� � x+ sin� � y)))

The adaptive photoreceptor circuit removes the background intensity in the stimulus and so we have
the four separable signals going into the computation stages in the model:

A = A � C � sin (2�ft � t+ 2�fs(cos� � x+ sin� � y))

A0 = A � C �H(ft) � sin (2�ft � t+ �t(ft) + 2�fs(cos� � x+ sin� � y))

B = A � C � sin (2�ft � t+ 2�fs(cos� � (x+ �) + sin� � y))

B0 = A � C �H(ft) � sin (2�ft � t+ �t(ft) + 2�fs(cos� � (x + �) + sin� � y))

Where �t(ft) is the phase introduced by the temporal low pass �lter and H(ft) is its magnitude. �
is the separation between the two pixels. The �nal motion opponent energy according to the model
is 4(AB0

�A0B). Substituting the expressions and denoting �t(ft) as �t, we obtain:
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Figure 4.5. (a) Circuits to obtaining signals A, B, A0, B0 without using di�erential current

representation. (b) Circuits to obtain signals A, B, A0, B0 using di�erential current representation.
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Figure 4.6. Schematic of a pixel showing all the circuits explained in the previous sections.
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O = 4 � A2C2H(ft)

2
664

sin(2�ft � t+ 2�fs(cos� � x+ sin� � y))�

sin(2�ft � t+ �t + 2�fs(cos� � (x+ �) + sin� � y))�

sin(2�ft � t+ �t + 2�fs(cos� � x+ sin� � y))�

sin(2�ft � t+ 2�fs(cos� � (x + �) + sin� � y))

3
775

Using the trigonometric identity 2 sinA sinB = cos(A�B)� cos(A+B), we can simplify the above
expression and rewrite the opponent motion energy as follows:

O = 4 � A2C2H(ft) � sin(2�fs�cos�) � sin(�t) (4.5)

From this expression we can observe that the opponent energy varies quadratically to variation in
contrast. Also, it varies sinusoidally with the stimulus orientation, which gives a positive response
for orientations between 0 to 1800 and a negative response for orientations between 1800 and 3600.
The opponent energy is a large positive quantity for a stimulus in the preferred direction and a large
negative quantity for a stimulus in the null direction. It would be zero for stimuli in orthogonal
orientations.

When we look at the spatial frequency response, the opponent energy is maximum at a spatial
frequency where 2�fs� cos � = �=2. We express the spatial frequency in cycles/pixel. So, the peak
of the spatial frequency variation plot can be expected to occur at fs cos � = 0:25 cycles/pixel. The
temporal frequency tuning plot is governed by the term H(ft) � sin(�t(ft)). The temporal �lter in
our sensor was shown to be a �rst order low pass �lter in Section 4.2. The product of the magnitude
and sine of the phase of a �rst order low pass �lter can be shown to be symmetric when we plot it
against log frequency and peaks at the 3 dB frequency. So, we should see the peak of the frequency
tuning plot at about the 3 dB frequency of the �lter and it should have a symmetrical response.

We now give results from the detailed characterization of the chip. For all the experiments the
setup is shown in Figure 4.9(a). Figure 4.9(b) shows a photograph of the setup on the work bench.
The chip is placed in a �pot box�, which has a bread board and potentiometers on it to generate the
biases for the chip. The top of the chip is covered with an 8mm CS mount lens which projects the
visual scene onto the die of the chip. The die is 2.2mm�2.2mm in size and has an array of 5�22
pixels on it. The stimuli are generated with a computer and are displayed on an LCD monitor as
shown.

The opponent energy from the sensor is a current output. So, we use a sense ampli�er with a
20K
 resistor in the feedback path as shown in Figure 4.10 to convert the current into a voltage
output. The power consumption of the chip was measured to be 41�W. A single program generates
the stimulus and reads data from the chip. The data from the chip is read into the computer
through a data acquisition card. During all the experiments we explain below the bias voltages are
held constant. Also, when an experiment is being conducted by sweeping a particular parameter,
all other parameters are held constant. The output voltages from the sensor are averaged over ten
temporal cycles of the stimulus to remove the phase dependence.

Figure 4.11 shows the raw data generated by the sensor. We can see two traces in this plot.
The lighter trace in the background is the raw opponent output from the chip. The darker trace
in the foreground is the temporally averaged version of the raw opponent output. During the �rst
interval, no stimulus is displayed on the monitor and we can see the chip reacting to the background
�uorescent light. The next interval shows the response of the chip to a stimulus in the preferred
direction. Similarly, the response of the chip when an orthogonal stimulus is presented is shown in
the third interval. Finally the last interval shows the response of the chip to a stimulus in the null
direction.

The response time of the chip, that is, the time it takes for the chip to detect the direction of
motion when the input image is a step, is about 50ms with a tolearnce of about 30ms because of
error from sampling. The response time was calculated when the opponent motion energy increases
from the base value to about 90 percent of the peak value when it detects the motion.

Figure 4.12 shows an orientation sweep of the stimulus. That is, the orientation of the stimulus
with respect to the preferred direction of the sensor is swept from 0 to 3600. As expected the
response to an orientation sweep is a sinusoid. Ideally, the response should be symmetrical in both
directions, but there is a slight asymmetry because of mismatch in the circuitry.
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(a) Sketch of the setup

(b) Photograph of the setup

Figure 4.9. (a) A sketch of the setup used in conducting the experiments. The sensor is placed

in the pot box and stimulus is displayed on a LCD monitor. A lens focuses the stimulus onto the

sensor. Data is read into the computer through a data acquisition card. (b) Photograph of the setup

on the work bench.



42

−

+
+
−

Iopp

(From Chip) Vopp

Rfb

Vref

Vopp = Vref + IRfb

Figure 4.10. Sense ampli�er circuit. The opponent motion current from the chip is fed into an

external operational ampli�er with a feedback resistor as shown to get a voltage output, Vopp which

is fed into the data acquisition card.
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Figure 4.11. Raw output from the motion sensor. There are two traces, the lighter trace shows the

actual raw output from the chip and the darker trace shows the temporally averaged version of the

data. For the �rst interval there is no stimulus, during the next interval the stimulus is presented

in the preferred direction, next it is presented in the orthogonal direction. In the last interval, the

stimulus traverses in the null direction.
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Figure 4.12. The opponent motion energy of the sensor is plotted when the orientation of the

stimulus is varied from 0 to 3600. The sensor is optimally tuned for a stimulus at 900.

Figure 4.13(a) shows the spatio-temporal frequency tuning of the sensor. That is, each point in
this plot is the opponent motion output at a particular spatio-temporal frequency of the stimulus.
The spatial frequencies are plotted on the X-axis and the temporal frequencies on the Y-axis. The
plot shows that the performance of the chip closely resembles the theoretical prediction as discussed
in Chapter 2. From the plot we can see that the opponent motion energy is positive for stimuli in
the preferred directions (�rst and third quadrants) and negative for stimuli in the null directions
(second and fourth quadrants). This clearly indicates that the chip is direction selective for a wide
range of frequencies. Also, the response of the chip is maximum for a particular spatio-temporal
frequency and gradually wanes as we move away from it as explained previously when discussing
the theoretical model.

Figures 4.13(b) and 4.13(c) show the opponent motion output by varying the spatial and temporal
frequencies respectively. In plot 4.13(b) we show response of the chip by varying the spatial frequency
of the stimulus. There are three traces in this plot, each trace corresponds to a di�erent temporal
frequency of the stimulus. From this plot we can see that the opponent motion energy is maximum
at about a spatial frequency of 0.25 cycles/pixel as expected. Similarly in plot 4.13(c) we show the
response of the chip by sweeping the temporal frequency. Again each trace in the plot corresponds
to a particular spatial frequency. We can see that the opponent motion is almost symmetrical as
expected and has a peak at about 6Hz.

Although the sensor is tuned for a particular spatio-temporal frequency, we can adjust the time
constant of the low pass �lter on the chip and change the temporal frequency tuning of the sensor.
In order to vary the time constant, we need to vary the bias current in the low pass �lter circuit as
described in Section 4.2. Figure 4.14(a) shows this variation in the temporal frequency tuning of the
sensor. Each trace in the plot is obtained with a di�erent bias setting for the low pass �lter circuit.

Figure 4.14(b) shows the response of the sensor when the contrast of the stimulus is varied. In
this plot we show the results from varying the stimulus in both the preferred and null directions
by changing the contrast of the stimulus. As expected the variation of the opponent energy with
contrast is almost quadratic in the preferred direction. But, it is not strictly quadratic in the null
direction because of mismatches in the circuits. We can see that the sensor can distinguish the
direction of motion to approximately 10% contrast.
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(a) Spatio-temporal frequency plot
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(b) Spatial frequency sweep
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(c) Temporal frequency sweep

Figure 4.13. (a) Spatio-temporal frequency tuning of the chip: Light colors indicate positive

average responses and darker colors indicate negative average responses. (b) Spatial frequency sweep

showing the opponent motion output, the three traces show the motion output at three di�erent

temporal frequencies. (c) Temporal frequency sweep showing the opponent motion output, the three

traces show the motion output at three di�erent spatial frequencies.
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(a) Temporal frequency tuning
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(b) Contrast sweep

Figure 4.14. (a) Varying the temporal frequency tuning of the plot. Each trace in the plot shown

here corresponds to a di�erent bias voltage V� , of the low pass �lter circuit, which changes its time

constant. (b) The contrast of the stimulus is varied in this plot. We can see that the sensor can

distinguish motion down till about 10%. The di�erence of motion energy between the preferred and

null directions diminishes when the contrast goes low.



Chapter 5

An Active Tracking System Based on the Motion Sensor

In this chapter we describe a closed loop control mechanism for active tracking based on the motion
sensor described earlier. The goal of active tracking is: the motion sensor is mounted on a base that
can rotate. The base is mounted on a rotating platform. The sensor should be able to stabilize the
base, i.e., cancel the e�ect of the rotation of the platform by controlling the rotation of the base using
visual motion input from the scene. This setup is shown in Figure 5.1. However, we do not use this
experimental setup. Instead, to realize this we use the same arrangement as described in Chapter
4. We do not have a rotating platform on which we mount the chip. The sensor is stationary and
pointed at an LCD monitor as shown in Figure 4.9. The stimulus we present on the monitor is a
sinusoidal grating moving at the relative velocity, between the platform velocity and the velocity of
the base, thus producing the same e�ect as mounting the chip on a rotating platform.

Initially the grating on the monitor starts o� with some velocity moving in either the preferred or
null direction. The velocity of the platform is given as input to the control loop. The response from
the chip which is the error signal, is continuously read and the velocity of the grating is corrected.
That is, it is slowed down till the grating stabilizes itself on the screen and the velocity of the grating
reaches zero. We used two methods for this closed loop control that can be easily translated into
hardware for performing active tracking. We now describe these two methods in detail.

5.1 Method 1

The closed loop control used in this case is shown in Figure 5.2. Vscreen is the velocity of the grating
that is displayed on the monitor. Vstimulus , which is given as the input to the control loop is the
velocity of the platform. The stimulus is started o� with an initial velocity and is presented on the
chip. The chip feeds back the opponent energy, which acts as the error signal. This signal Vchip,
is multiplied by the feedback parameter, Kp, and is subtracted from the velocity of the platform,
Vstimulus . Thus the screen velocity is corrected till it is �nally stabilized and reaches zero. We can
express the control loop shown in the block diagram of Figure 5.2:

Vscene = Vstimulus �Kp � Vchip (5.1)

Figure 5.3(a) shows the results from using this control scheme. This �gure plots the screen
velocity of the grating against time. It has three traces in it and each trace corresponds to a
di�erent value of the parameter Kp. In this experiment we let the grating start o� with an initial
high velocity. The control system then tries to counter the rotation of the platform using the error
signal. We can see from the �gure that the system stabilizes and the velocity reaches zero. When
we let the system run for a while after it reaches stability, the screen velocity oscillates around zero
as expected. The darker traces in the plot correspond to smaller values of Kp and the lighter traces
correspond to larger values of Kp. From the �gure we can see that when the value of Kp is large, the
oscillation in the screen velocity after it reaches zero is large since we are now correcting the screen
velocity by a larger amount (see Equation 5.1). We performed a second experiment in which we
vary the feedback parameter Kp and measure the time to reach zero velocity. Figure 5.3(b) shows
the results from this experiment. In this �gure we plot time on Y-axis and the feedback parameter
on X-axis. We can see that it takes a longer time to reach zero velocity with a smaller feedback
parameter, but there is a limit beyond which increasing the value of Kp does not help anymore. It
only increases the amplitude of oscillation after Vscene reaches zero.

5.2 Method 2

In this method we also include the rate of change of error signal in the control loop as shown in
Figure 5.4(a). As in method 1, if Vscreen is the velocity of the grating displayed on the monitor,
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Base

Chip

Platform

Figure 5.1. Experimental setup for active tracking. The chip is mounted on the base. The base is

on a rotating platform. The goal of the chip is to control the velocity of the base and compensate

for the rotation of the platform based on the visual motion cues in the scene.

-
+ Vscreen

Kp Chip

Vstimulus

Figure 5.2. First form of closed loop control. The velocity of the grating to be displayed on the

monitor is corrected based on the feedback from the chip.
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(b) Experiment 2.

Figure 5.3. (a) This plot shows the performance of the �rst closed loop scheme by varying the feedback
parameter Kp. Darker traces have larger value of Kp than the lighter traces. We can see that when the
feedback parameter, Kp is small, it takes a longer time for the system to stabilize and reach zero. (b) This
plot shows the results from the experiment in which we measure the time to reach zero velocity by varying
the feedback parameter Kp. The value of Kp is started at 0:068 and incremented in steps of 0.002.
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Vstimulus , the velocity of the platform and Vchip, the correction factor from the chip, the control
loop can be expressed as:

Vscreen = Vstimulus �Kp � Vchip �Kd � V
0
chip (5.2)

The results from using this scheme are show in Figure 5.4(b). In this experiment we vary the
value of the parameter Kd (for a �xed value of the parameter Kp), and observe the time to reach
zero velocity. We can also observe from this plot that the time to reach zero velocity decreases when
compared with method 1. That is, when we also include the rate of change of error in the feedback
of the control loop the performance of the system improves.

Kd

Kp

d/dt

Chip

-

+ VscreenVstimulus

(a) Control system.
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(b) Experimental results.

Figure 5.4. (a) Second form of closed loop control. The velocity of the grating to be displayed

on the monitor is corrected based on both the error signal from the chip and the rate of change of

error. (b) This plot shows the performance of the second closed loop scheme. We measure the time

to reach zero velocity by varying the feedback parameter Kd. The value of Kp was �xed at 0:068

and Kd was incremented in steps of 0:04.

From the above two simulations we can see that this chip can be used in real-time closed-loop
control to correct the velocity of a moving grating. This has obvious applications in camera image
stabilization and others.



Chapter 6

Robot on a Chip

In this chapter we describe a second application based on our motion sensor. It is the design of a
chip, RoaCh(Robot on a Chip). A robotic platform typically has sensors on board and a processor
which fuses all the sensory information and generates the necessary commands for its navigation or
any other task it has to perform. Most often this implies taking real world continuous time sensory
signals, transforming them into the digital domain and feeding them into the processor. All this
would mean sampling the continuous signals and then using the processor for control. One can easily
imagine a situation where the sampling process might lead to a loss of information because of the
very nature of sampling. Also, the processor running on a clock would be consume a lot of power.
A work-around for the loss of information would be to increase the resolution of the digital signal
sent by the sensors, meaning, increasing the number of bits. But this would counteract the idea of
decreasing the power of the entire system as one would have more bits to deal with. Thus, the idea
of moving the control system onto the single monolithic block along with the sensors is a natural
extension to the project when considering the application of motion sensors to robotics.

A simple robot with the entire sensory system and control circuitry on a single chip: Robot on
a Chip(RoaCh) is now described. The objective of the robot is the following: The robot is �rst
stationary at a position, it keeps checking for motion in a 360-degree �eld of view. Once it detects
motion in either its left or right eye, it turns the opposite direction and starts running away from it.
After a while it stops and goes back to its original stationary state and keeps checking for motion.
The idea of having a left and right eye on RoaCh is di�erent from the conventional idea of having two
di�erent sensors, each acting as an eye. There are not two vision chips acting as the left and right eye.
Instead, there is only one vision chip, but the entire linear array of pixels is divided into two halves.
The one to the left is called the left eye and the one to the right, the right eye. This arrangement
can be understood from Figure 6.1. Figure (a) shows the placement of the chip and the 3600 �eld of
view around it and (b) shows how the �eld of view is projected on the chip's one dimensional linear
array. A lens-mirror system can be used to project the left hemisphere of the entire 360 degree �eld
of view onto the left part of the array. Similarly, it can project the right hemisphere of the �eld of
view of the robot onto the right part of the linear array (Chahl and Srinivasan, 1997). An other
alternative that could be used for such an arrangement instead of lenses and mirrors is using �ber
optic image conduits available commercially (Edmund Optics Online, 2001).

In this section we describe the control system needed for such a task and the circuitry needed to
implement it. The results from circuit simulations using SPICE are also presented.

6.1 Control Scheme
The control scheme used for this system can be understood from the block diagram shown in Figure
6.2. As shown in the top part, the entire linear array of 2n motion pixels is divided into two halves,
called the left eye and the right eye. The left eye has the Adelson-Bergen(AB) motion pixels �n to
�1 in it and the right eye has the AB motion pixels 1 to n in it. Each AB motion pixel as discussed
in the previous chapters has a photodetector stage and a subsequent signal processing stage which
implements the Adelson-Bergen algorithm. The output of such a motion pixel is a motion energy
current. The motion energy current is denoted as I(j) in the block diagram where j is the number
of the pixel in the array. This motion energy current is positive for motion detected in the preferred
direction and negative for motion detected in the null direction. The RoaCh does not use this
information to compute the direction of motion, instead, it checks if there is motion detected at all
in either eye and uses this to generate a turn in the opposite direction, i.e., turn left if motion is
detected in the right eye and vice versa. It does not matter if the motion is in the preferred or null
direction. So, each of these currents is taken through an absolute value circuit, shown as ABS block
in the block diagram. These currents after taking the absolute value are represented as jIj j in the
block diagram. The currents, jIj j, from the same eye are summed together, shown as IL for the left
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(b) Projection onto the chip

Figure 6.1. (a) 360 degree �eld of view around the robot. (b) Projection of the world around the

chip onto its one dimensional linear array.

eye and IR for the right. After summing them they are compared with a threshold to check if there
is motion detected in that eye. If the summed current is greater than the threshold, it indicates a
motion detected in that eye and a motion pulse for the opposite direction goes high as shown in the
block diagram. A motion pulse, ML is generated to indicate that motion has been detected in the
right eye and the robot has to turn left. Similarly MR goes high when the robot has to turn right.

After detecting motion, the RoaCh should determine how long the robot should turn. For this,
the RoaCh uses a spatial position encoding circuit as shown in the block diagram. That is, the
length of time the robot turns depends on the position of the pixel in the eye which detects motion.
The farther the pixel is from the center of the eye (which is de�ned as, towards pixel 1 in the right
eye and towards pixel �1 in the left eye), the smaller is the turn that the robot needs to make. The
spatial position encoding circuit generates the encoded position as a voltage.

Once a motion is detected, the turn pulses have to be generated. Before going into this process,
there is one more complication that needs to be addressed. When the robot starts turning, both
eyes start generating motion pulses continuously, as the whole world is now turning relative to the
eyes of the robot. These motion pulses are not real, i.e., not generated by an external motion, but
are generated because of the robot's turning. To solve this problem of distinguishing these from
real external motion, the RoaCh uses a biologically inspired technique called �saccadic suppression�
(Volkman et al., 1968). That is, once motion is detected in an eye, the robot ignores all other motion
pulses for a while during which it makes the turn. This saccade pulse is generated using the motion
pulses and external o�-chip RC elements as shown in the block diagram.

Using the saccade pulse from the saccade generator block and the motion pulses, RoaCh generates
the initiator pulses, turn left initiate and turn right initiate as shown in the block diagram. These
are generated when there is motion detected in an eye and when the saccade pulse is low, indicating
a true external motion.

The turn left initiate and the turn right initiate pulses generate the actual turn pulses, turn left
and turn right for a length of time determined by the encoded position from the spatial position
encoding block and by using o�-chip RC elements as shown in the block diagram. The turn pulses
generate a run initiation pulse. This run initiate pulse sets o� the actual run pulse and the robot
starts running when the turn pulses go low.

These three pulses TL, TR and Run determine the state of the robot, turning left, turning right,
running or staying stationary. These three pulses are used by motor circuits which generate the
signals needed for the o�-chip H-Bridges, which drive the motors of the robot as shown in the block
diagram.

Some of the circuits used in the control system for RoaCh are the spatial position encoding circuit,
which computes how far the robot has to turn from its current position, the current comparator
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circuit, which determines if the robot needs to turn, the saccade pulse generation circuit to generate
the saccade pulse. These and other circuits used in the control scheme are discussed next.

6.2 Circuitry

6.2.1 Absolute Value Block

In the block diagram we propose the use of an absolute value of the motion energy current. The
reason for this is as follows. From Chapter 4, we see that the motion energy current is positive for
the preferred direction and negative for the null direction. But RoaCh does not use this information
for computing the direction of turn. The RoaCh sees if there is any motion at all in either the left
or the right eye and signals the direction of turn in the opposite direction, that is turn left if motion
is detected in the right eye and vice versa. This is the reason the motion energy current is taken
through an absolute value circuit before using it to compute the direction of turn. The absolute
value circuit is discussed in section 4.3.

6.2.2 Motion Pulse Generation Circuit

From the absolute value block, all the currents from motion pixels in each half of the linear array
are summed by wiring them all together and the sum is realized by plain Kircho�'s current law.
To compute the motion pulses ML or MR, we need to check if there is motion in the eye. We set
an external threshold Ith as shown in the block diagram for this. If the summed current is greater
than the threshold, ML/MR pulses go high indicating motion in that eye. If there is no motion in
the eye, the summed currents are less than the threshold and the motion pulses ML/MR are low
indicating the absence of motion. The current comparator circuit shown in Figure 6.3 (Tra�, 1992)
is used to generate the motion pulse. A description of the operation of the circuit is given below.

Vdd Vdd Vdd

M1

M2

M3

M4

MthVth

Vdd Vdd

Ma

Mb

Mc

Md
Vout

Iin

ML/MRVin

Idiff

Ith

Figure 6.3. Current comparator circuit.

The transistor Mth is used to set the threshold current, Ith in the circuit. The summed current
from the absolute value circuits is represented by Iin. By setting the bias Vth for Mth, we can
determine the threshold current. The di�erence current between Ith and Iin, Idiff is fed into a
source follower circuit (transistors M1-M2). To understand this circuit, let us start by considering
the case when the di�erence current, Idiff �ows into the node Vin. The transistor M2 sinks this
current, pulling up the node voltage of Vin. This causes the voltage on the node Vout to go low
as M3-M4 is an inverter. The transistor pair M1-M2 has linear transfer characteristics between its
input voltage and output voltage. Thus a decrease in the voltage at node Vout would decrease the
voltage at node Vin. However, in this process, the node voltage at Vin is pulled up high enough to
�ip the state of the inverter M3-M4 and make it to go low. Node Vout is fed to an inverter pair
Ma-Mb and Mc-Md which generate a nice peak to peak output pulse ML/MR. similarly, one can
analyze the case when the di�erence current, Idiff �ows out of the node Vin. The node voltage
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Vin is pulled low, causing the voltage at node Vout to go high which leads to pulling up the voltage
at node Vin. From these cases we can see that feedback prevents the voltage on the node Vin to
move all the way to the rails. Instead, it moves just enough to �ip the state of the inverter M3-M4.
By keeping the changes in this voltage small, the circuit can detect changes even in small current
signals. Two such current comparator circuits are needed, one to generate the MR signal from the
left eye and the other to generate the ML signal from the right eye.

Simulation Results: The results from the simulation of the circuit are shown in Figure 6.4. All
the important voltage traces are plotted against the di�erence current Idiff shown in Figure 6.3.
As explained earlier, one can see that the voltage Vin stays relatively constant at about 2.5V. The
voltage Vout changes enough above and below the threshold voltage of the next inverter such that
it can �ip its state. This leads to a rail to rail voltage swing of the output motion pulse ML/MR.
The current at which ML/MR �ips its state, which is about 20nA in this case can be adjusted by
changing the bias voltage of the transistor, Mth.
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Figure 6.4. SPICE simulation results of Current comparator circuit: The di�erence current Idiff
between Ith and Iin, at node Vin is plotted on the X-axis. The three voltage traces, Vin, Vout and

ML/MR are plotted on the Y-axis. We can see Vin not changing much, and Vout �ipping enough to

change the state of the next inverter and the �nal ML/MR pulse going from rail to rail.

6.2.3 Spatial Position Encoding Block

As discussed earlier, the length of time the robot turns depends on the position of the motion pixel
in the eye. If the pixel is farther from the center of the eye, the robot has to make a shorter turn
away from it. The spatial position encoding circuit is used to detect the pixel that detects motion
in the �eld of view and it outputs a voltage corresponding to the position of the pixel in the eye.
The circuit is shown in Figure 6.5 (Deweerth, 1992). The circuit consists of a series of di�erential
pairs, using a common global current mirror. Each di�erential pair receives a reference voltage input
from a resistive network formed by the voltage sources V0, Vn and the resistors R1; R2; � � � ; Rn. The
currents jI(1)j; jI(2)j; � � � ; jI(n)j are the currents generated by the absolute value block in the left or
right eye. These currents provide the bias current for the di�erential pairs. The pixel that detects
motion has the largest current. All other di�erential pairs are inhibited, except the one which detects
motion. The output of the spatial position encoding circuit, Vcentroid, thus represents the position of
the pixel which detects the motion in the eye. There are two such spatial position encoding circuits,
one for each eye.

There is one more design issue that has to be considered for the spatial position encoding circuit,
which is the design of the resistances in the resistive ladder. If all the resistors are equal, the centroid
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voltage, Vcentroid would be linear with the position. That is, V (j)centroid for the jth position in the
linear array of pixels would be,

V (j)centroid =

Pj

i=1(Ri)Pn

i=1(Ri)
� (Vn � V0) + V0 (6.1)

This voltage is used in the turn generation circuits to charge up an external capacitor up to
V (j)centroid. The turn pulse then goes high and then the capacitor is discharged through a resistor
(Rcent in Figure 6.11) to ground. The turn pulse goes low when the capacitor discharges down to a
threshold voltage of Vth.

This spatial encoding circuit where the centroid voltage is linear has been used for visual tracking
using edge detection in (Indiveri, 1999). But the RoaCh needs a linearity in time and not in centroid
voltage, which means, the length of time the turn pulse stays high should be linear with the position
of the pixel in the array, but not the centroid voltage. So the centroid voltages should be designed
appropriately.

The discharge time of a capacitor to ground through a resistor is not linear, but logarithmic
instead. Rearranging the expression for an exponential decay of a voltage with time in a RC circuit,
we can express the time of decay as shown:

t = R � C � log
Vinit

Vfinal
(6.2)

Where, R � C is the time constant, Vinit is the initial centroid voltage the capacitor is charged
to. Vfinal is the threshold voltage to which the capacitor discharges to. To compensate for the
exponential decay of voltage through a capacitor, we need to design the resistances in such a way
that the centroid voltages are encoded exponentially, which would in e�ect linearize the length of
the time the turn pulse stays high. We can design the resistors to make this encoding exponential.
The derivation to determine the resistance of these resistors is as follows. The time it takes for a
centroid voltage Vj to discharge to a threshold voltage Vth is given from Equation 6.2 as,

tj = R � C � log
Vj

Vth

Let � =
Pn

i=1Ri. Using Equation 6.1 in Equation 6.2 we can write,

tj = R � C � log

"
(Vn � V0) �

Pj

i=1 Ri

Vth � �
+
V0

Vth

#
(6.3)

The above equation can be rearranged as follows:

tj = R � C log

"
(Vn � V0) �

jX
i=1

Ri + � � V0

#
�R � C log (Vth � �)

Which can be rewritten as:

(Vn � V0) �

jX
i=1

Ri = exp

�
tj

R � C
+ log (Vth � �)

�
� � � V0 (6.4)

When j=n, which is the case when motion is detected in the farthest pixel from the center, the
following hold:

Vj = V0

tn = n ��t = R � C � log
Vn

Vth
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Where �t is the incremental time slice. That is, the turn pulse for a pixel position stays high more
than the previous pixel by a time �t. Let  = 1

Vn�V0
. Rearranging Equation 6.4, we can express

the resistance of the resistors in terms of time as:

jX
i=1

Ri =  � exp

�
j�t

R � C
+ log (Vth � �)

�
�  � � � V0 (6.5)

An initial � can be chosen based on the layout area available and we can solve the following n
equations to determine the n resistor values:

When j=1, R1 =  � exp

�
�t

R � C
+ log(Vth � �)

�
�  � � � V0

When j=2, R1 +R2 =  � exp

�
2�t

R � C
+ log(Vth � �)

�
�  � � � V0

When j=3, R1 +R2 +R3 =  � exp

�
3�t

R � C
+ log(Vth � �)

�
�  � � � V0

...

When j=(n-1), R1 +R2 +R3 +Rn�1 =  � exp

�
(n� 1)�t

R � C
+ log(Vth � �)

�
�  � � � V0

Rn = ��

n�1X
i=1

Ri

Using the above equations, Figure 6.6 shows the values for resistances in a design with 60 pixels
in the linear array. We can see that for designing such a resistive ladder, we need to be very precise
in the values of the resistances. However, in actual practice, it is not always possible to obtain
precise resistance values. For example, in the current process we use for our chips, the minimum
denomination of resistance per square we can obtain from poly1 is 26:6 
=�. From Figure 6.6 we
can see that the minimum resolution of resistances needed is in the order of about 4 ohms. So, if
we try designing a resistive ladder which has a minimum resolution above 26:6 ohms between its
resistances, the area needed for the resistive ladder becomes very large making it impractical to
realize on a chip.

A second approach to solve the problem of obtaining linearity in time with pixel position comes
not by designing the resistors specially, but by using a transistor in parallel with the turn capacitor
for the discharge as shown in Figure 6.7. The resistors can all be designed equally in this case to
obtain a linear voltage encoding of position. Instead of using an o� chip resistor and capacitor to
generate the delay for the turn pulse as shown in Figure 6.11, we now use an o� chip capacitor
and an on chip transistor for the decay. This is a more elegant solution for the problem, as one
can even adjust the length of the time slice by changing the bias voltage Vleak . But, this comes
with a price of an added bias voltage costing an extra pin. The simulation results for this circuit
with SPICE are shown in Figure 6.7(b). The top plot shows the switch which is closed initially at
about 10 microseconds and opened at 200 microseconds. The capacitor Ccentroid gets charged to
the input voltage from the spatial position encoding circuit. The bottom plot shows this voltage
being discharged as time progresses. In this plot we sweep the input voltage from the spatial position
encoding circuit from 1V to 4V. We can see that with varying input voltages, the capacitor discharges
linearly in time, which is what is needed.

6.2.4 Saccade Pulse Generator Circuit

The way �Saccadic Suppression� is implemented is as follows. Whenever motion is detected, the robot
starts turning in the opposite direction ignoring all other motion pulses for a certain predetermined
time. Thus the RoaCh can suppress the e�ect of additional motion pulses once the robot starts
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|I(n)|

Rn-2 R1

|I(n-2)| |I(1)|

Figure 6.5. Centroid circuit to encode spatial position. It consists of a series of di�erential pairs

with a common global current mirror. The input bias currents are obtained from the previous stage.

The resistive ladder sets the reference voltage for each di�erential pair.
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Figure 6.6. Resistor values for the spatial position encoding circuit with 60 pixels in the linear

array. Which means, there are 30 resistors in each spatial position encoding circuit. For the above

plots, we chose Vn = 4:4V; V0 = 1:2V;R � C = 1:25sec. (a) Shows the case when total resistance,

� = 1K
. (b) Shows the case when total resistance, � = 2K
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Figure 6.7. (a) Circuit to implement linearity of time in the spatial position encoding circuitry.

(b) Results from SPICE simulation of the circuit. The top plot shows the voltage signal (TLI/TRI)

that controls the charging of the capacitor. The switch to charge the capacitor Ccent closes at 10 �s

and opens at 200 �s as shown. In the bottom trace we show the time of discharge of the capacitor

through Mleak, for various voltages of Vcent, to which the capacitor gets charged to.
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Figure 6.8. Circuit to generate saccade pulse.

turning and avoid triggering of false turn initiation pulses. The schematic of the circuit is shown in
Figure 6.8.

A saccade pulse has to be generated when there is an ML or an MR pulse, which tells the robot
that there is motion detected and it needs to turn left or right. But, the robot should not turn for
every ML or MR pulse. It needs to turn only when there is no motion detected already. So, we
need a �memory� of the previous state of the robot. This can be achieved by using an SR �ip-�op.
In order to determine how long the saccade pulse stays high, we need to measure time, which is
achieved through a capacitive decay with the help of a capacitor Csac and a resistor Rsac as shown
in Figure 6.8.

The operation of the circuit can be understood from the timing diagram shown in Figure 6.9
where we plot all the signals occurring in the circuit against time. The saccade pulse shown in the
last trace goes high when the voltage on the capacitor, Vsac (shown in the seventh trace) is above
a certain �xed threshold voltage of 1.2V. This threshold is set by the inverter I1 which �ips its
state at this low threshold value. A series of three other inverters which �ip their state at a medium
threshold value of about 2.5V are needed to obtain the correct logic sense. Ideally just one transistor
after I1 is su�cient to obtain the correct logic sense for the saccade pulse. But, the inverters I2 and
I3 are needed to obtain steep rising and falling edges for the saccade pulse. The top two traces show
the motion pulses, ML and MR. The third trace shows the SAC pulse, which is the output from
the inverter I1. The SR �ip-�op generates the signal SACI , which is used to control the switch
that charges up the capacitor Csac. The switch needs to be closed when there is a motion pulse and
when the saccade pulse is already not high. In other words, the input to the �ip-�op which sets its
next state should be:

S = (ML+MR) � (SAC)

This signal S which sets the next state of the �ip-�op is shown as the fourth trace. There is one
more thing that needs to be taken care of for this circuit, which is the reset signal for the �ip-�op,
SACHI . The �ip-�op needs to be reset i.e., the switch charging the capacitor needs to opened
when the saccade pulse reaches a high threshold voltage. This signal is obtained from an inverter,
Ia which has a high threshold value at which it �ips its state. The output of this inverter goes low
when the voltage on the capacitor, Vsac is above a high threshold, designed to be about 4V. The
output of Ia is again complemented by Ib so that, SACHI goes high when Vsac goes above 4V,
and it goes low when it falls below 4V. SACHI is plotted as trace �ve. Once SACHI goes low,
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Figure 6.9. Timing diagram showing all the pulses in the saccade pulse generation circuit.
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the saccade pulse is still high. The inputs to the �ip-�op are now both low and the switch charging
Csac remains open till Vsac drops to the low threshold value of 1.2V. At this point, SAC goes high
and the �ip-�op is now ready to detect new motion pulses that are generated.

6.2.5 Initiation Pulse Generation Circuits

These are the circuits that generate the turn initiation and run initiation pulses. The schematics
are shown in Figure 6.10. A turn initiate pulse, either turn left initiate (TLI) or turn right initiate
(TRI) should be generated when the saccade pulse is low and when the corresponding motion pulse,
ML or MR goes high. Or, in other words

TLI = ML � Saccade

TRI = MR � Saccade

Initially when the robot is at rest, the saccade pulse is low and when the robot sees any motion, the
turn initiate pulse goes high. When the robot starts to turn, as the motion pulses are continuously
high, the saccade pulse stays high but the turn initiate pulse goes low. Similarly, the run initiation
pulse would go high when either TL or TR goes high.

RI = TL+ TR

ML

Saccade
TLI

MR
TRI

TL
TR RI

Saccade

Figure 6.10. Circuits to generate initiation pulses. The top two circuits generate the turn left

initiate and the turn right initiate pulse, which trigger the turn left and the turn right pulses, The

bottom circuit generates the run initiation pulse which triggers the Run pulse.

6.2.6 Turn Pulse Generator Circuit

Once a turn initiate pulse is generated, the actual turn pulse has to be generated for a length of time
determined by the encoded position as discussed earlier in the control scheme. The circuit shown
in Figure 6.11 does this job. This circuit shown here generates a turn left, TL pulse. A similar
circuit is used to generate the turn right pulse, TR. The TLI pulse is complemented, called TLI
and these are used as the control signals of a transmission gate as shown in the �gure. The input to
the transmission gate comes from the spatial position encoding circuit. This input voltage encodes
the position of the motion pixel in the right eye. When TLI is high, the transmission gate allows
an external capacitor Ccent to charge up to the input voltage. Once the turn initiation pulse goes
low, the transmission gate shuts o�. The capacitor Ccent then starts discharging through a resistor
Rcent to ground. This discharge time would determine how long TL stays high. The voltage on this
capacitor is applied to the input of an inverter I1, which is sized such that it �ips its state at an
input voltage of 1.2V. The inverter I4 generates the turn left, TL pulse. The TL pulse is a strong
high when the input to I1 is above 1.2V and strong low when the input is below 1.2V. The length of
time the robot turns is also determined by the input voltage to which the capacitor Ccent is charged
to, thus encoding the position of the motion pixel. Another important thing to be observed is, the
voltage at which I1 �ips, 1.2V sets the lower limit V0 of the reference voltage for the spatial position
encoding circuit shown in Figure 6.5.
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Figure 6.11. Circuit to generate turn pulse.

6.2.7 Run Pulse Generator Circuit

The circuit shown in Figure 6.12 generates the Run pulse. This circuit is quite similar to the other
pulse generator circuits. The run initiation pulse acts as the control signal for generating the Run
pulse. A PFET pass transistor acts as the switch to pull the voltage of the capacitor Crun all the
way up to Vdd. Once the RI pulse goes low, the switch is turned o� and the capacitor Crun starts
discharging to ground through Rrun. The inverter chain is designed such that any voltage below
1.2V puts out a strong low run pulse and any voltage above 1.2V on Crun would put out a strong
high run pulse.

6.2.8 Motor Command Generator Circuits

All the circuits discussed previously generate the necessary signals for turning and running. These
signals have to be translated into real world motor control signals. The RoaCh generates H-Bridge
control signals for controlling the motors for the wheels of the robot. A typical H-Bridge is shown
in Figure 6.13. A H-Bridge takes a DC supply voltage and provides 4-quadrant control to a load
connected between two pairs of power switching transistors (Regan, 1999). In this research the load
is a DC motor shown between + and � in Figure 6.13. A H-Bridge can be controlled using di�erent
con�gurations, but the one used here is as follows, when the wheel has to move forward, the switches
1a and 2b have to be closed, similarly 2a and 1b have to be closed for reverse motion. For sake of
notation, the pair 1a and 2b is called F (for forward) and the pair 2a and 1b is called R (for rear)
from here on. There are two motors to be controlled, left motor and right motor. Let FL and RL
represent the switches of left motor and FR and RR represent the switches of right motor. The
various possible states for the motors are Stay, turn left, turn right, Run. Table 6.1 describes the
generation of the H-Bridge signals.

Though some of the cases described in the Table 6.1 cannot occur if the external capacitors
and resistors are chosen appropriately, those are included to avoid any indeterminate state, if it
ever occurs. From Table 6.1, we can generate the necessary boolean functions for generating the
H-Bridge controls. These are as follows:
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Figure 6.12. Circuit to generate Run pulse.
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Figure 6.13. A typical H-Bridge for a DC motor. 1a and 2b need to be closed for forward direction;

2a and 1b need to be closed to for reverse direction.

TL TR RUN STATE FL RL FR RR

0 0 0 Stay 0 0 0 0

0 0 1 Run 1 0 1 0

0 1 X Right 1 0 0 1

1 0 X Left 0 1 1 0

1 1 X Stay 0 0 0 0

Table 6.1. State Table of RoaCh
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FL = RUN � TL+ TR � TL

RL = TL � TR

FR = RUN � TR+ TL � TR

RR = TR � TL

From the above equations, we can synthesize CMOS logic circuits to implement them as shown
in Figure 6.14.

Simulation Results: Figures 6.15 and 6.16 show the results from simulating the entire control
circuit of RoaCh in SPICE. All the plots are from a transient analysis and so show signals against
time in seconds. The top trace in Figure 6.15(a) shows the voltage on the saccade capacitor Vsac,
the second trace shows the saccade pulse being generated from it. We can see that the saccade pulse
is always high for a �xed period of time after it detects motion in either eye. The next three traces
are of TL, TR and RUN which control the state of the RoaCh at any time.

Figure 6.15(b) shows the generation of TL pulse. The top trace shows the voltage on the capacitor
Ccentroid, Vcentroid described earlier. This voltage is named as Vtl here to indicate that this generates
the TL pulse. We can see that at about 0.1 seconds, the TLI pulse goes high and the capacitor is
charged up to about 1.8V. This causes the TL pulse to go high and it stays high till the voltage Vtl
discharges to about 1.2V, and at about 0.25 seconds, the TL pulse goes low. At about 2.2 seconds
TLI goes high again. But this time motion is detected in a pixel closer to the center of the eyes
and so Vtl gets charged to about 2V and so TL stays high for a longer time till about 2.6 seconds as
shown.

Figure 6.15(c) shows the generation of TR pulse. Again the top trace shows Vcentroid, which is
termed as Vtr here as it generates the TR pulse. In this �gure, we can see that at about 1.3 seconds
TRI goes high. Vtr gets charged up to about 2.1V as motion is now detected at a pixel much closer
to the center of the eye. So, TR stays high for a long time. After Vtr discharges to about 1.2V, TR
goes low. At about 3.1 seconds TRI goes high again, but TR stays high for a shorter time now as
motion is detected in a pixel farther from the center of the eye.

Figure 6.15(d) shows the generation of the RUN pulse. The top trace shows the voltage Vrun on

the run capacitor Crun. The second trace shows RI . So, Crun gets charged when RI is low. The
RUN pulse shown in the bottom trace goes high when the voltage Vrun is above 1.2V.

Figure 6.16 shows the actual motor command signals against time. The top three traces are
the turn left, right and run pulses, explained previously. The bottom four pulses are the signals
generated from the motor circuits which would feed the H-Bridge and control the motors. From the
state table of the RoaCh shown in Table 6.1, one can see that the four H-Bridge pulses, FL, RL, FR
and RR are in accordance with it.

6.3 Simulation of the Entire RoaCh System

The simulation results for the entire RoaCh system in MATLAB are given in Figures 6.17 and 6.18.
In Figure 6.17 we show the results from the simulations of the two eyes of RoaCh, that is, from

the linear array of A-B motion pixels. Figures 6.17(a) and 6.17(b) show the inputs and outputs of
the eyes at progressive times. The top plot in both �gures shows the 3600 �eld of view around the
robot. The stimulus versus degrees surrounding the robot is plotted on the x-axis. One can see a
source of stimulus at about 3000 in the �gure. The second plot is similar to the �rst plot, but this
time, the stimulus is plotted in the robot's frame of reference (so that one can see the external source
in both the eyes). As time progresses, the robot turns and the stimulus in the robot's eyes changes
as seen in the plot. The third plot shows the same image as in the second plot, but, with the mean
value of the background �ltered out. The fourth plot shows the response of the photoreceptors of
the pixels. Notice that in this �gure the photoreceptor response versus the pixels in the array is
plotted. The linear array has 40 pixels as shown in the plot, pixels 1 to 20 constitute the left eye
and pixels 21 to 40 constitute the right eye. The �fth plot shows the low pass �ltered photoreceptor
output. The sixth plot has two traces in it, the �nal opponent energy, and the absolute value of the
opponent energy.
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Figure 6.14. Circuits to generate motor control pulses.
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Figure 6.15. Results from simulating the entire control scheme of RoaCh in SPICE: (a) Shows the

pulses TL, TR, RUN which determine the state of RoaCh and also the saccade pulse. (b) Shows

the generation of the TL pulse based on Vtl and TLI pulse. (c) Shows the generation of the TR

pulse based on Vtr and TRI pulse (d) Shows the generation of the RUN pulse based on Vrun and RI

pulses.
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Figure 6.16. Results from SPICE simulation of the entire RoaCh control circuit : The top three

traces show the turn pulses TL, TR and the Run pulse. The bottom four traces show FL, RL, FR,

RR which are the inputs to the two H-Bridges that control the motors of the robot. These four

traces follow the state table of the RoaCh given in Table 6.1.
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In Figure 6.18(a) the saccade pulse, and the three pulses, TL, TR and RUN, which govern the
state of the robot are plotted against time. The saccade pulse goes high whenever there is motion
detected in either eye. It stays high for a certain �xed period of time as shown in the �gure. When
either the turn pulse is high or the robot turns in that direction. The robot starts running when the
RUN pulse is high (and when the turn pulse goes low).

The Figures 6.18(c) and 6.18(d) show the generation of the TR, TL pulses respectively. As
explained earlier, the length of time TR and TL stay high is determined by the spatial position
encoding circuit. The voltages Vtr and Vtl are obtained from the spatial position encoding circuit
of each eye and these are used to charge up a capacitor as explained before. The capacitor, Ccent is
then discharged to ground through a resistor, Rcent. Vtr and Vtl are shown in the �rst plot of both
�gures (c) and (d). One can observe that, these voltages decay with time, as these are the voltages
on the capacitor Ccent. The turn pulses, TR and TL are shown in the third plot in both �gures (c)
and (d). These stay high as long as the voltages Vtr and Vtl are above a certain threshold and go
low when Vtr and Vtl reach the threshold. The initiation pulses, TRI and TLI are shown in the third
plot in both the �gures. Similarly, Figure 6.18(b) shows the RUN pulse and the associated pulses,
Vrun and RI.
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Figure 6.17. MATLAB simulations of RoaCh showing the external �eld of view and outputs from

computation stages in the A-B motion pixels at progressive times.
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Figure 6.18. MATLAB simulations of RoaCh (a) Shows the three pulses TL, TR, RUN which

determine the state of RoaCh and also the saccade pulse. (b) Shows the generation of the RUN

pulse based on Vrun and RI pulses. (c) Shows the generation of the TR pulse based on Vtr and TRI

pulse (d) Shows the generation of the TL pulse based on Vtl and TLI pulse.



Chapter 7

Discussion

In the previous chapters the implementation of the Adelson-Bergen algorithm was explained in
detail. Now some improvements that could be made so that a better VLSI implementation of the
Adelson-Bergen algorithm results will be discussed. Some of the issues when doing system level
design using the sensor will also be discussed.

7.1 Circuit Level Improvements

The squaring circuit was discussed in Section 4.3. From Equation 4.4 one can see that the squared
current is scaled by a factor of I0. But, this current level can still be high enough that it will increase
the power consumption of the chip. With two extra transistors, one can get this current level down,
decreasing the power consumption of the chip. A normalized squaring circuit that can achieve this
is shown. Figure 7.1 shows the circuit.

The relation between the recti�ed current input to this circuit, Irect and the squared output
current, Isq is now derived. As in Section 4.3, the early e�ect for these transistors operating in
subthreshold region is neglected. Let the voltages at node N3, N4 and N5 be Va, Vb and Vc
respectively. The expressions for currents through the transistors M4, M5, M6, M7 and M8 are:

IM4 = I0e
��(Va�Vb)

V
T (7.1)

IM5 = I0e
��V

b

V
T (7.2)

IM6 = I0e
��(Va�Vc)

V
T (7.3)

IM7 = I0e
��Vnorm

V
T (7.4)

IM8 = I0e
��Vc

V
T (7.5)

We can see that IM4 = IM5 = Irect; IM8 = Isq . The current through the transistors M6 and M7 is
equal and let it be Inorm. From Equation 7.5, one can write:

Vc =
VT

�
� log

Isq

I0
(7.6)

Similarly, as the currents IM4 and IM5 are equal, equating the right hand sides of Equations 7.1 and
7.2, one can write

Va = 2 � Vb (7.7)

Substituting the results from Equations 7.6 and 7.7 into Equation 7.3 and after simpli�cation, one
obtains the �nal result:

Isq =
I2rect
Inorm

(7.8)
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Figure 7.1. Normalized squaring circuit. The current level in the circuit can be adjusted using the

bias voltage Vnorm.

from which one can see the advantage of using this circuit. The current Inorm can change and have
control over the order of magnitude of the squared current Isq . This current, Inorm can be adjusted
with the bias voltage Vnorm.

Adelson and Bergen propose the use of squaring the oriented linear responses, (A�B0), (A0+B),
(A + B0), (A0

� B) before taking the sums and di�erence to obtain the opponent motion energy.
As explained earlier, in the actual hardware implementation we �rst rectify these signals to obtain,
jA � B0

j, jA0 + Bj, jA + B0
j, jA0

� Bj and then computed the squares. It was seen in Section
4.3 that squaring these signals involved the use of twelve additional transistors per pixel. Another
modi�cation that could be done to the hardware implementation is to eliminate the squaring stage
altogether, thus getting rid of all the transistors needed for squaring. Thus, the non-linearity needed
in the algorithm would now be computed by the recti�cation stage alone. Though this is a deviation
from the original form of the algorithm, it is more amenable for VLSI implementation, since a smaller
transistor count would mean smaller pixel size leading to a denser pixel array and better resolution.

The results are now shown for the simulation of the entire pixel circuitry in ANALOG, a circuit
simulation tool (Chipmunk Tools, 1988). Figure 7.2 shows the results from using the non-linearity
that was used to implement chip, that is, squaring the recti�ed oriented linear responses, jA�B0

j,
jA0+Bj, jA+B0

j, jA0
�Bj. In Figure 7.2(a), the photocurrents from two adjacent pixels are plotted.

From 0:28 to 0:36 seconds, the stimulus traverses in the null direction (observe that the lighter trace
leads the darker trace), from 0:36 to 0:42 seconds the stimulus is orthogonal (observe that the phase
di�erence between the photocurrents of adjacent pixels is zero), and �nally from 0:42 to 0:52 seconds
the stimulus traverses in the preferred direction (observe the darker trace leading the lighter trace).
In Figure 7.2(b) the �nal opponent motion output current from the motion pixel is plotted. As
expected, the opponent motion current is negative when the stimulus is in the null direction, zero
when the stimulus is orthogonal and positive when the stimulus moves in the preferred direction.

Similarly, Figure 7.3 shows the results from using the non-linearity proposed earlier, that is, using
just the recti�cation as non-linearity and not squaring the recti�ed signals. In Figure 7.3(a), the
photocurrents from two adjacent pixels are plotted as previously done. From 1:37 to 1:49 seconds,
the stimulus traverses in the null direction (observe that the lighter trace leads the darker trace),
from 1:49 to 1:58 seconds the stimulus is orthogonal (observe that the phase di�erence between the
photocurrents of adjacent pixels is zero), and �nally from 1:58 to 1:74 seconds the stimulus traverses
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Figure 7.2. Simulation results using both recti�cation and squaring in the non-linearity stage. (a) In this
plot each trace corresponds to the photocurrent detected in adjacent pixels. During the �rst time interval,
the stimulus is in the null direction (light trace leads the darker trace), then it is orthogonal (the traces have
no phase di�erence), after which the stimulus is in the preferred direction (darker trace leads the lighter
trace). (b) The opponent motion energy current is plotted in this trace.
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in the preferred direction (observe the darker trace leading the lighter trace). In Figure 7.3(b) the
�nal opponent motion output current from the motion pixel is plotted. As expected, the opponent
motion current is negative when the stimulus is in the null direction, zero when the stimulus is
orthogonal and positive when the stimulus moves in the preferred direction.

If one looks at the opponent motion current plots in Figure 7.2(b) and in Figure 7.3(b), one
can notice the di�erence between the two methods. In the �rst method, when the squaring after
recti�cation is included, a nice distinction between the opponent currents in the preferred and null
directions is achieved. That is, the opponent current in the preferred direction oscillates above 7
nano amperes and the opponent current in the null direction oscillates below �7 nano amperes.
There is a dead zone between 7 and �7 nano amperes. When the squaring after recti�cation is not
computed, one can see that there is no dead zone. The opponent current in the preferred direction
oscillates above �25 nano amperes and it oscillates below 25 nano amperes in the null direction.
But one can still clearly distinguish the direction of motion by doing a temporal averaging. This is
the price one pays for reducing the transistor count.

In this section two circuit level changes are described, one is the use of a normalized squaring
circuit and the second change is getting rid of the squaring completely, thus using only recti�cation
in the non-linearity stage. A revised version of the motion sensor was fabricated which incorporated
the above changes.

7.2 Issues in System Level Design

In Chapters 5 and 6, two applications of system level design based on the AB sensor were described.
Though only two applications in this work were mentioned, as described in Chapter 1, one can also
couple motion with other visual tasks like stereo disparity measurement to realize more complex
behaviors. In (Schwager, 2000), the author shows how Adelson-Bergen algorithm can be used in
stereoscopic vergence control and tracking. As the initial computation stages of Adelson-Bergen
algorithm in this sensor already exist, one can easily integrate both motion and stereo-disparity for
obtaining complex behaviors. Though this sensor is on a single monolithic block, one can implement
the Adelson-Bergen algorithm as a multi-chip system. By using di�erent chips to perform di�erent
stages of computation, one can couple motion and other visual tasks more e�ciently. Work on such
a multi chip system is already in progress.

7.3 Summary

In this work a motion sensor based on a biologically inspired algorithm for motion detection, the
Adelson-Bergen algorithm was described. A detailed description of its VLSI implementation was
also given. Results from extensive characterization of the chip were reported. Two application
examples of this sensor were described. One was an active tracking mechanism using the chip
that was fabricated. The second was the design of a single monolithic robot chip (RoaCh), which
combines the motion sensor and a control scheme on it. RoaCh can be used on any commercially
available robot like a Khepera (K-Team Inc Online, 2001) or a custom made robot. The details
of the modeling of an early visual pathway of the �y which is thought to be involved in motion
computation was also described.
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Figure 7.3. Simulation results using recti�cation alone in the non-linearity stage. (a) In this plot each
trace corresponds to the photocurrent detected in adjacent pixels. During the �rst time interval, the stimulus
is in the null direction (light trace leads the darker trace), then it is orthogonal (the traces have no phase
di�erence), after which the stimulus is in the preferred direction (darker trace leads the lighter trace). (b)
The opponent motion energy current is plotted in this trace.
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