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Abstract

Modern age intelligent systems will require extensive computational power, complex parallel process-
ing units, and low-power design. Biologically inspired neuromorphic VLSI systems present a viable
solution to the demands of both highly parallel, and low-power consuming processors. Among bi-
ological sensory systems, vision is the most important one with the largest portion of the brain
devoted to visual computations. Biological models for tasks like visual motion computation, target
pursuit, and crash-avoidance have been extensively studied. In this thesis, a biologically inspired
target-fixation model has been analyzed and implemented in VLSI. A modular approach for design-
ing a sender-receiver based tracking system has also been discussed. A spiking-neuron sender chip
has been implemented using a frequency-encoded event driven communication protocol. This sender
chip is used to relay information about changes in image intensity to a computational unit in a modu-
lar visual system. The use of these neuromorphic chips has been suggested for developing monolithic
and modular target-tracking systems for yaw-torque control in a robot. The mixed-signal chips work
in the subthreshold region of the MOSFET and consume very little electrical power. Subthreshold
implementations are very well suited for the low-frequency behavior of real-world tracking systems.
System level architecture and simulations of such a tracking system have also been presented.
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Chapter 1

Introduction

Design of an intelligent machine that can perform human-like tasks is a great engineering challenge.
Even the simplest task performed by man being extended to machines remains a distant goal. This
is partly due to our incomplete understanding of these mechanisms and partly due to the physical
restrictions on the density of wires and the cost of communications imposed by the spatial layout
of electronic circuits. At the same time, these tasks can be performed by the smallest of biological
organisms with relative ease indicating their feasibility.

The complexity and parallelism of biomimetic algorithms and their real-time applications rule out
the use of slow serial processors and software implementations. High-speed digital signal processors
are an alternative for doing these computations in real-time. These architectures, though fast, have
to be connected to analog sensors. Continuous-time signals from these analog sensors have to be
sampled at a very high frequency to reduce aliasing. Moreover, this communication of data at high
speeds over finite length buses from the sensor to the processor has become a bottleneck for the
overall system performance (Cong et al., 1996). Besides, digital computers are extremely effective
when precise numerical solutions are sought. The nervous system and neuromorphic algorithms
accept fuzzy, noisy input to produce an approximate result. The design of such systems is therefore
fundamentally different from designing digital processors. The analog nature of the neural system
can therefore be best implemented by using high-speed, high-density, parallel analog VLSI designs.

1.1 Neuromorphic Engineering

In the field of Neuromorphic Engineering, inspiration is taken from neurobiological circuits and
models, which are implemented through analog building blocks and novel circuits. Pioneering work
on the implementation of neural circuits on silicon hardware started in the late 1980s (Mead, 1989).
Rapid advances in this field have been made since then. Visual, auditory, and other bio-sensory
models have been successfully implemented (Koch et al., 1991; Horiuchi et al., 1996; Indiveri et al.,
1996b; Lazzaro and Wawrzynek, 1997; Higgins and Shams, 2002). Of these, vision is particularly
prominent and has been widely studied. It is no surprise, because out of the 1011 neurons (Koch,
1999) that the human brain has, more are devoted to vision than to any other sensory function
(Zigmond et al., 1999). Vision is a complex task and neuromorphic systems have been developed
to implement various visuo-motor mechanisms. These include self-motion estimation, navigation,
target pursuit, and collision avoidance. The visual system of insects is easier to study because
of the abundance of the subjects, particularly the fly, and the relatively lower complexity of the
insect brain (see Figure 1.1). The fly’s eyes are the so-called compound eyes, which consist of about
700 ommatidia (in Drosophila) that cover approximately 86% (310◦) of the visual field (Huber and
Bülthoff, 1998). The light captured by each ommatidium is projected onto 8 photoreceptors (see
Figure 1.2). The visual signals from the eyes are processed in three neural layers illustrated in Figure
1.1: (i) the lamina, (ii) the medulla, and (iii) the lobula complex (comprised of the lobula and the
lobula plate).

Motion information plays a vital role whenever an object moves in the visual field, or an insect
moves in a stationary environment. Let us consider three very common situations:

1. When an insect deviates from a straight course in flight, the visual environment is coherently
displaced.
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Ommatidium

Figure 1.1. Schematic horizontal cross-section of the fly’s brain. The retina, three visual ganglia: the
lamina, medulla and lobula complex (which is subdivided into the anterior lobula and the posterior lobula
plate), the central brain and the thoracic ganglia with the motor control centers constitute the nervous
system. The fly’s nervous system has approximately 105 neurons. Modified from Egelhaaf and Borst (1993a).
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Figure 1.2. Axonal projection of photoreceptor cells from the retina onto the lamina in the eye of the fly.
(a) Optical stimulation of two adjacent receptor cells R1 and R6. (b) The axonal projection on the lamina
is such that R1 and R6 are immediately adjacent (twisted black) photoreceptor cells. (c) The clustered
R1-R6 cells, suggested to increase the signal to noise ratio of the input as received by a movement detector.
Reproduced without permission from Franceschini et al. (1989).
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2. When it approaches an obstacle, there is an expansion of the retinal image.

3. When the insect passes a nearby object in front of a distant background, there is a discontinuity
in the visual motion field.

These retinal motion patterns create a different neuronal response for each scenario. This infor-
mation is used to guide the visual orientation of the insect such that:

1. Rotatory large field motion signals unintended deviations from the course. This response is
known as the optomotor response. An auto-steering system may be formed by extracting this
information.

2. Expansion of the image signals an approaching obstacle. It may control behavioral responses
like deceleration during landing and crash-avoidance.

3. Discontinuities in the visual flow field indicate moving objects in front of a distant background.
This information can be extracted by a fixation system and may be used for target pursuit.

All these behaviors have been studied extensively in flies and neuronal circuits for the above have
been derived by physiological studies and electrical recordings (Egelhaaf and Borst, 1993b). The
robustness of a biological system is inherited from a profusely parallel architecture and distributed
information processing units. Low-power analog VLSI circuits operating in the sub-threshold region
of field-effect transistors can be densely packed in a small area to obtain a viable processing element.
This can be replicated to design a parallel processor performing computations similar to living
neurons. Advances in this field provide a new paradigm for solving real-world problems in real-time.
The presented thesis is a contribution to this effort.

1.2 Related Work

Smart vision systems performing tasks like motion computation, auto-navigation, and target tracking
are an inevitable part of an autonomous mobile robot. Conventional vision systems based on the
system level integration (or even chip level integration) of an imager (usually a CCD) camera and
a digital processor have limitations in terms of cost, size and complexity of these systems. Due to
these factors, conventional vision systems have limited use in the design of small intelligent agents.
Vision chips including photosensors and parallel processing elements (analog or digital) have been
under research for more than a decade and illustrate promising capabilities.

Highly parallel implementation of biological algorithms is achieved by doing focal-plane compu-
tations in a single chip. This monolithic architecture generally consists of an array of computational
units processing information transduced into electrical signals by a sensor on the same silicon chip.
Mahowald’s (1994) silicon retina chip was amongst the first vision chips which implemented a bi-
ological facet of vision on silicon. The computation performed by Mahowald’s silicon retina was
based on models of computation in distal layers of the vertebrate retina, which include the cones,
the horizontal cells, and the bipolar cells. Stereo matching chips which use static and dynamic
features of images and compute disparity in nine image planes were implemented by Mahowald and
Delbrück (1989). Boahen and Andreou (1992) implemented a silicon retina in a compact circuit
with a diffusive smoothing circuit. DeWeerth (1992) implemented a centroid detection chip based
on an aggregation network. A two-dimensional (2-D) motion detection chip designed for computing
spatio-temporal gradients of the input image was among the first few implementations of a motion
detecting chip (Moore and Koch, 1991). Harris et al. (1990) developed an analog hardware for de-
tecting discontinuities in early vision. The correlation-based motion detector of Delbrück (1993b),
unlike some other motion detection systems which depended on spatial and temporal differentiation,
used correlation to extract motion information and hence claimed to be more robust than other mo-
tion detectors. “Facilitate and sample” algorithms were implemented to calculate the time to travel
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by Kramer et al. (1997). Higgins and Korrapati (2000) implemented the Adelson-Bergen algorithm
to compute motion energy. The time-to-crash sensor of Indiveri et al. (1996a) was a demonstration
of how a neuromorphic vision chip could be used for real life applications.

Focal-plane level processing is very well suited for medium sized algorithms. As the complexity of
the algorithm increases, so does the size of the processing unit, until the processing unit becomes so
large that the percentage of space devoted to the phototransducer area and therefore the resolution of
the system is reduced significantly. Overloading of computations in the focal plane and less imaging
area in a monolithic system are the reasons that motivate the splitting of computation into smaller
modules. Modular architectures that divide the computations into two or three processing stages
have evolved over the years (for review, see: Higgins and Koch, 1999). Various schemes have been
developed to relay information from one chip to the other in a modular architecture. Significant work
related to developing a frequency encoded address-event representation scheme for communication
was done by Boahen (1999). Landolt, Mitros, and Koch (2001) have designed a communication
scheme that discards colliding events and allows only error-free events to be transmitted off-chip.
Higgins and Koch (1999) implemented multi-chip motion-processing architecture that was based on
a sender-receiver system. A biologically-inspired computational architecture for small-field detection
and wide-field spatial integration of visual motion was developed by Higgins and Shams (2002) for
computing self motion.

Rapid advances have been made in the field of motion processing architectures and their extension
into behavioral applications is becoming prevalent. A detailed summary of the works in the field of
visual sensors was presented by Moini (1997).

1.3 Presented Work

In this thesis, visual motion computation algorithms and their implementation are studied and a
target-tracking sensor based on a neuronal model from the fly is presented.

Chapter 2 discusses a brief summary of the biological algorithms and neuronal circuits for motion
detection and target pursuit believed to be present in the brain of the fly and invertebrates in general.

Chapter 3 describes the simulations and VLSI implementation of a biological model used by the
fly for target-tracking. The preliminary characterization results of this monolithic target tracking
sensor are also presented.

In Chapter 4, the importance of modular architectures, a description of sender-receiver chip
based systems, and VLSI implementation of a spiking neuron sender chip are presented. This chip
sends the contrast information in its visual field over a digital asynchronous bus. An implementation
of this asynchronous communication protocol is also discussed.

In Chapter 5, a target tracking agent based on a biological model is presented. This agent receives
the small-field response from a sensor and tracks a moving target in a cluttered environment. The
simulation results of this system are shown and discussed.

In Chapter 6, the system limitations and improvements are discussed to conclude this thesis.
The modular implementation of the entire system is described. Finally, the future extension of this
work is discussed.
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Chapter 2

Biological Algorithms for Motion Detection and

Tracking

This chapter discusses various biological algorithms that have been proposed to explain the complex
visual processing in insects to detect and track objects in the real world. The evolution of life was
controlled by sunlight in its initial phase; as a consequence of this solar selection, eyes developed
as the primary outpost of the brain (Land and Fernald, 1992). The most primitive visual systems
had protein components called opsins, which captured photons from the surrounding environment.
In vertebrates, the cone and rod opsins phylogeny maps onto the phylogeny of the parent species,
thus showing a long and complex evolutionary lineage (Land and Fernald, 1992). The easy-to-find
nature of insects and the relatively lower complexity of their brain make them the ideal candidate
for study. In the next section, the anatomy and physiology of the insect eye are discussed. The next
few sections discuss two important correlation and spatio-temporal motion algorithms. The neural
circuitry behind target fixation and pursuit are then discussed.

2.1 The Insect Eye

Most insects have compound eyes, the most common type being apposition eyes. Each unit, or
ommatidium, consists of a lens that forms an image onto the tip of the rhabdom, a light guiding
structure of photo pigment (see Figure 2.1). An inverted image is formed behind each facet to
delineate each rhabdom’s field of view and to increase its brightness. However, the image is not
resolved within the rhabdom. The insect sees the overall erect image that is formed by the apposed
pixels contributed from the ommatidia (Land and Fernald, 1992). Detection of motion is one of the
most important functions of the eyes. It is used for navigation, obstacle avoidance, prey detection,
and course stabilization. Exner (1891) proposed that arthropods use motion parallax to estimate
distances. Movement of an object in front of a motionless animal, or the self-motion of the animal,
produces an orderly sequence of excitations in the photoreceptor cells. This process is same for the
compound eyes of insects and the camera eyes of the vertebrates (see Figure 2.1a). The resulting
electrical signals produced by the photoreceptor array are processed by specialized neural micro-
circuits that inform the animal about its motion relative to its ambience. Exner (1894) showed that
sequential flashing of two neighboring stationary light spots creates a vivid impression of apparent
motion in humans. He postulated the presence of a motion perception center that has ganglion cells
responsible for directional motion detection. These directional selective neurons were later discovered
in arthropod visual systems. Electrophysiological recordings from these cells have enhanced our
understanding of visual motion.

In flies, the lobula complex (third optic ganglion) is divided into two parts. The posterior lobula
plate houses 50 identifiable direction selective neurons participating in optomotor control related to
head and body movement (Hausen and Egelhaaf, 1989). Most of these tangential cells are wide-
field direction selective (DS) cells. The H1 cell found in the lobula plate of the fly is the most
experimented-with specimen of DS neurons. This giant neuron has extensive dendritic arbor in the
lobula plate and is separated from the photoreceptor cells by at most three or four synapses. This
neuron is broad and covers the entire panoramic field of view of the ipsilateral eye. It responds
with an increased firing rate to horizontal forward movements and inhibits its response to motion in
the backward direction. Small-field motion detection cells, called figure detection (FD) cells, were
discovered by Egelhaaf (1985a). FD cells have smaller excitatory fields (see Figure 2.2) and are
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Figure 2.1. Single chambered and compound eyes. (a) Apposition compound eye showing several omma-
tidia next to each other. Each ommatidium consists of a lens that forms image on the tip of a light-guiding
structure, the rhabdom. The camera eye, common in vertebrates including man, has a single chamber
consisting of an outer cornea and an inner lens forming an image on the retina. (b) Sketch of omma-
tidium showing lens and rhabdom. The spatial distance between two adjacent ommatidia is given by an
interommatidial angle ∆φ along the x-axis.
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believed to be a part of a fixation system which induces turning towards objects. These small-field
motion detection cells, found in the lobula plate, respond to motion of small patterns in large parts
of the fronto-lateral visual-field. The guidance of a fly is supposed to be through the interactive
coordination of both horizontal cells and FD cells.

The H1 sensitivity to directional motion is due to pooling of the signals from small field units
called the elementary motion detectors (EMDs), which project perpendicularly to the dendritic fan in
a retinotopic manner. Since H1 responds readily to local motion between two points in its receptive
field that are one interommatidial angle (∆φ in Figure 2.1b) apart (McCann, 1972), the array of
EMDs feeding it must be wired very finely to it. It has been observed that small field cells are distally
located to H1 (in the medulla: McCann and Dill, 1969) and they do not necessarily drive the DS
lobula plate because there exists other direct output links from the medulla to the brain. R1-6 type
photoreceptor cells feed their input to the motion detecting circuitry of H1 (McCann and Arnett,
1972). The various experiments by Heisenberg and Buchner (1977) have shown that the optomotor
response is mediated predominantly by receptors of the R1-6 type (see Figure 1.2). R1-6 project to
the lamina that is believed to be involved in motion detection circuitry driving H1 (Franceschini et
al., 1989). Direction selective motion suggests correlation among the different photoreceptor units.
In a breakthrough work, Hassenstein and Reichardt (1956) concluded that motion detection by the
nervous system requires an interaction of signals from two adjacent ommatidia. In the next section,
this model of EMD as proposed by Hassenstein and Reichardt is discussed in detail.

2.2 The Hassenstein-Reichardt (HR) Model

The idea of a correlation-based motion detector was first proposed by Exner (1894). Analysis of the
optomotor response of the beetle Chlorophanus provided electrophysiological support to the model.
Hassenstein succeeded in eliciting that motion detection by the nervous system requires an interac-
tion of signals from two directly adjacent ommatidia. In 1956, Hassenstein and Reichardt developed
the correlation model (HR model) to explain their experimental observations. The input/output
analysis of the experimental results inferred that the basic neural computation consists of three
steps:

• Asymmetric linear filtering of signals from adjacent photoreceptor cells.

• Multiplication of the resulting signals.

• Time averaging of the product obtained.

On the basis of these observations, a correlation-based motion detector model was proposed (see
Figure 2.3). According to this model, the two dimensional visual field is covered by local motion
detectors, which evaluate a spatio-temporal cross-correlation between the light intensity fluctua-
tions between the two neighboring detectors. Each motion detector consists of two photodetection
units followed by two temporal filters and a multiplication sub-unit arranged in a mirror-symmetric
fashion. The first of the two temporal filters is a high-pass filter that enhances the sharp temporal
features of the image. It is followed by a direct and a delayed path leading to two separate multipli-
cation units. The direct response from one photodetector is multiplied with the delayed input from
the adjacent detector. The difference between two such processed signals gives a spatio-temporally
tuned response that is directionally selective along the orientation of photodetector axis.

For a one dimensional (1-D) sinusoidal stimulus moving at a velocity v, the image intensity is
given by:

I(x, t) = I + ∆I sin(2πfsx + 2πftt) (2.1)

where I is the mean intensity of the stimulus, ft is the temporal frequency and fs is the spatial
frequency. The contrast of the grating is ∆I/I. The signal velocity is a ratio of temporal and spatial
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Figure 2.2. Spatial integration properties of neural elements. (a) The position of the HS cell and the FD
cell in the fly lobula plate. (b) Dependence of the mean response amplitude of a HS cell and a FD cell on
the size of the stimulus pattern. The response of HS cell reaches its maximum for motion of large patterns,
whereas the FD cell responds strongest when a small pattern is moved in its receptive field. Reproduced
without permission from Egelhaaf and Borst (1993a).
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Figure 2.3. Modified Hassenstein-Reichardt (HR) model. The photoreceptor (PR) collects visual infor-
mation and a high-pass filtering stage (HPF) enhances the features of the scene. This HPF stage was a
modification introduced by Van Santen and Sperling (1985). This filtered photoreceptor response and a
delayed output from an adjacent photoreceptor are correlated by a multiplication (×) stage. The difference
of two such adjacent correlation stages gives a direction selective output. A running average is computed by
the block RA, which gives the time averaged output from the detector.
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frequency, v = ft/fs. We can re-write the above as:

I(x, t) = I + ∆I sin(ωtt + ωsx) (2.2)

where ωs = 2πfs and ωt = 2πft.
As seen in Figure 2.1b, the two sampling points in space are separated by an angle ∆φ from each

other, so their response can be written as:

A = K(ωt)∆I sin
(

ωtt − ωs
∆φ

2
+ ζ(ωt)

)
(2.3)

B = K(ωt)∆I sin
(

ωtt + ωs
∆φ

2
+ ζ(ωt)

)
(2.4)

Here, K(ωt) is the magnitude and ζ(ωt) is the phase response of the high-pass filter (Figure 2.3).
The delay required by the HR model can easily be approximated as a low-pass filter, so the response
after the delay elements is given by:

A′ = G(ωt)K(ωt)∆I sin
(

ωtt − ωs
∆φ

2
+ ζ(ωt) + ψ(ωt)

)
(2.5)

B′ = G(ωt)K(ωt)∆I sin
(

ωtt + ωs
∆φ

2
+ ζ(ωt) + ψ(ωt)

)
(2.6)

where, G(ωt) is the magnitude and ψ(ωt) is the phase response of the temporal low-pass filter,
respectively. The correlation of these delayed and non-delayed responses is fed to a subtractor to
obtain an opponent output, which is positive for motion in one direction and negative for motion in
the opposite direction. This opponent output is given as:

O(t) = AB′ − A′B = (∆I)2G(ωt)K2(ωt) sin(ψ(ωt)) sin(ωs∆φ) (2.7)

This is directionally selective based on the value of ωt = 2πvfs, where v can have both positive and
negative values, hence the opponent output. Note that this output is independent of both x and t,
so the position of the motion detector and the time at which the motion occurred does not affect
the output of this detector.

This correlation-based technique also takes care of the aperture problem seen in many computer-
based velocity determining algorithms. It is known that due to the limited scope of the aperture,
the only component of motion that can be computed is oriented perpendicular to the orientation of
the segment (Hildreth and Koch, 1987). With correlation-based detectors, apart from certain loca-
tions, the two dimensional (2-D) velocity field can be correctly estimated (Reichardt and Egelhaaf,
1988). The correlation model of motion detection has been extensively studied and reviewed in flies.
The plausible neural circuit for multiplication has been a questioned stage in the HR model based
detector. If the inputs to the multiplicative stage are supposed to be x and time delayed y, the
required operation should result in xy. An equivalent form of HR detector multiplies x and 1 − y,
instead of y. The equivalent to this is derived from shunting inhibition (Furman, 1965) in which x
is divided by 1 + y. The first term Taylor series expansion of this gives a reasonable approximation
to the multiplication stage and contains the term xy (Torre and Poggio, 1978).

2.3 The Adelson-Bergen Algorithm

The computations in the HR detector are inherently opponent and are composed of a leftward and
a rightward motion response. However, the terms AB′ and BA′ in Figure 2.3 are not leftward and
rightward motion energies. Therefore, independent detection of leftward and rightward motion at
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threshold is not readily accommodated in the HR model (Adelson and Bergen, 1985). Motion is
the orientation in space and time. Hence, a measure of this spatio-temporal energy can be used to
measure the motion in any orientation (direction). This is the premise of the Adelson-Bergen model,
in which the spatial and the temporal impulse response units act as the weighting functions and their
combined response gives the spatio-temporal impulse response unit (Adelson and Bergen, 1985). In
a sub-unit, there are two spatial filters (SF) followed by two kinds of temporal filters, with two
different delays associated with them (Figure 2.4). These low-pass filtered responses (A,A′, B,B′)
are combined to get four different oriented responses. Each of these is squared and added to give
the oriented energy. For a 1-D case similar to that discussed in the HR model, the oriented energies
are leftward and rightward. The two sets of opposite-oriented energies are subtracted to give the
opponent motion output. The spatial filters are modeled as Gabor filters in quadrature and are
mathematically expressed as:

fs1(x) = e−
x2

2·σ2 · cos(ωx · x) (2.8)

fs2(x) = e−
x2

2·σ2 · sin(ωx · x) (2.9)

The temporal filters are second and third order Gaussian functions, the temporal impulse re-
sponse of which is written as:

ft1(t) = (kt)3 · e−kt2 ·
[

1
3!

− (kt)2

(3 + 2)!

]
(2.10)

ft2(t) = (kt)5 · e−kt2 ·
[

1
5!

− (kt)2

(5 + 2)!

]
(2.11)

A detailed derivation of this model has been done by Korrapati (Korrapati, 2001). The final
result is presented here as the result of subtraction of opponent energies for a sinusoidal grating
with spatial filters tuned to a spatial frequency ωx = 2πfx and temporal filters tuned to temporal
frequency ωt = 2πft.

O(t) = 4 · I2 · |fs1| · |fs2| sin(φs1 − φs2)︸ ︷︷ ︸
spatial

· |ft1| · |ft2| sin(φt1 − φt2)︸ ︷︷ ︸
temporal

(2.12)

where |fs1| and |fs2| are magnitudes of the two spatial filters, |ft1| and |ft2| are the magnitudes of the
two temporal filters, φs1 and φs2 are the phases of the spatial filters, and φt1 and φt2 are the phases of
the temporal filters. As seen, the Adelson-Bergen algorithm can also be expressed as the product of
separable spatial and temporal frequency terms. The output in itself is independent of the position x
and time t and has been shown to be an equivalent of the HR model (Van Santen and Sperling, 1985;
Adelson and Bergen, 1985). This algorithm is used as a model for the motion response of a primate
cortical complex cell. The next two sections describe the two principal mechanisms believed to
underlie target tracking in insects.

2.4 FD Cell Based Target Fixation

A fly can distinguish a small moving object from its background on the basis of their relative motion
alone (Reichardt et al., 1983). Figure-ground discrimination has been extensively studied in flies,
and neural circuitry for the same has been proposed by Egelhaaf (1985b). It is believed that two
functional classes of output elements of the visual ganglia are involved in figure-ground discrimination
by relative motion in the fly: horizontal cells that respond to large textured patterns, and FD cells
which are most sensitive to small moving objects (Egelhaaf, 1985a). Input to the FD cells is provided
by two retinotopic arrays of small-field (SF) elementary motion detectors, responding either to front-
to-back or back-to-front motion (see Figure 2.2). Four types of FD cells (from front-to-back FD1 and
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Figure 2.4. Adelson-Bergen motion detector. The input stage consists of spatial filters (SF). A pair of
temporal filters (TF1 and TF2) with different time constants treats the output from the SF stage. The
summation of two such responses from adjacent receptors gives oriented linear responses. Squaring and
adding these gives oriented motion energies. The difference between two such oppositely oriented energies
gives a direction selective opponent output.
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FD4, and back-to-front FD2 and FD3) receive these motion responses. According to their preferred
direction of motion, FD cells are excited by one of these types of motion detectors and inhibited
by the other. The inhibition is brought about by synaptic transmission from pool cells (see Figure
2.5) that aggregate the response of the motion detectors from the entire visual field. FD cells are
believed to receive at least four different types of motion sensitive input (Egelhaaf, 1985a):

1. Excitatory input by small field motion from the ipsilateral visual field.

2. Inhibitory input by the same part of the visual field, elicited by motion of opposite polarity.

3. Inhibitory input by ipsilateral large-field pool cells sensitive to motion in the preferred direction.

4. Inhibitory input by contralateral large field motion in the null direction.

A postulated neural circuit model based on the FD cells has been described by Egelhaaf (1985b).
The FD cell based small-field motion detector unit evaluates the discontinuities in the retinal motion
field induced due to the relative motion of a small object to a distant background. Thus, it can
indicate a nearby moving object in the presence of a moving background. It can therefore be a part
of the fixation system inducing turning response towards targets. The model was further modified by
Reichardt et al. (1989) and this model circuit is presented in Figure 2.5. The cup-shaped elements are
the photoreceptors (PR) and two such adjacent PR units are input to elementary motion detectors
(EMDs) based on the HR model. The detector output is split into positive (v+

i ) and negative (v−
i )

responses (v+
i > 0 and v−

i < 0). As discussed in the previous section, the HR detector sub-units do
not have leftward and rightward motion energy. So, this oriented output (v+

i or v−
i ) is computed

externally from the opponent output of the detector, such that:

v+
i (t) = pos(RHR(t)) (2.13)

v−
i (t) = g ∗ neg(RHR(t)) (2.14)

where RHR is the HR detector response, and g < 1 is a factor indicating that the progressive response
is stronger than the regressive response. Two sets of pool cells spatially sum the EMD responses and
are thus weakly direction selective. The P+ pool cells are activated by front-to-back motion and
inhibited by back-to-front motion, and P− pool cells by opposite polarity. The inhibitory response
is weighted by a factor T < 1 and the pool cell response is given by the following expressions:

P+(t) =
∑

[v+
i (t) + T · v−

i (t)] (2.15)

P−(t) = −
∑

[v−
i (t) + T · v+

i (t)] (2.16)

The pool cells from both sides of the brain are assumed to interact with individual EMDs. The right
and left side responses can be combined to form clockwise (cw) and counter clockwise (ccw) turning
response with a relative contribution of ipsilateral and contralateral input of 0 < k < 1.

P cw
right(t) = P+

right(t) + k · P−
left(t) (2.17)

P ccw
right(t) = P−

right(t) + k · P+
left(t) (2.18)

It must be noted that this model is tuned only to the rotatory motion of a fly. This leads to response
of opposite sign from the two eyes, since small-field units in both the eyes are modeled to have a
positive response to a motion away from the heading direction of the fly. Therefore, this does not
handle the translatory motion while tracking a target. Modifications to this model to combine both
translatory and rotatory motion are discussed in Chapter 5. The P cw

right and P ccw
right responses interact

with the individual EMD responses. The relative contribution of both the pool cells to individual
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Figure 2.5. Model of small-field motion system based on the FD cell. Responses from two adjacent cup-
shaped photoreceptors (PR) are input to the motion detectors (EMDs). These EMDs pool their positive
and negative input to two types of directionally selective binocular pool cells (P+, P−). Excitatory and
inhibitory synapses are indicated by black and white tipped arrows, respectively. The contralateral side
response is weighted by the factor 0 < k < 1. Inhibitory input channels synapsing on the pool cells are
weighted by the factor 0 < T < 1. These directionally selective pool cells interact with the individual motion
detector output channels prior to their summation by the output cell (XSF ). The influence of P+ and P−

response may differ from one another by a factor 0 < k∗ < 1. The output is a combination of the response
from XSF and a running average of this output calculated by RA. Modified from Reichardt, Egelhaaf, and
Guo (1989).
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EMDs is weighted by a factor 0 < k∗ < 1 to maintain the direction selectivity. This is so because
when k∗ becomes one, each motion component gets divided by the sum of all the motion components.
This interaction is usually modeled as a weak response. The response of the detector channels, after
shunting inhibition by the pool cells and assuming the saturation of the output approximated by an
exponent q < 1, is given by:

y+
i (t) =

v+
i (t)

β + [P cw
right(t) + k∗ · P ccw

right(t)]q
(2.19)

y−
i (t) =

v−
i (t)

β + [P ccw
right(t) + k∗ · P cw

right(t)]q
(2.20)

The responses are non-linearly transmitted and the excitatory and inhibitory responses are accumu-
lated. The response for one of the eyes is given as:

R(t) =
N∑

i=1

[y+
i (t)]n − [|y−

i (t)|]n (2.21)

The responses from these units on either side of the brain are further subtracted from each other.

RSF (t) = Rr(t) − Rl(t) (2.22)

The response of the output cell is a combination of the real time response and a running average of
the response.

O(t) = RA + RSF (t) (2.23)

This model response matches very well with the electrophysiological recordings of the torque response
of a fly to a moving target in front of a background.

2.5 Male Specific target pursuit system

It has been argued by another leading group of researchers that the FD cell based model for target
fixation is not the primary mechanism behind target pursuit (Gronenberg and Strausfeld, 1991;
Douglass and Strausfeld, 1995; Buschbeck and Strausfeld, 1996). During sexual pursuit, the target
is stabilized in the dorso-frontal acute zone of the compound eyes in male flies (see Figure 2.6).
Visual control of insect flight has been observed by compensatory optomotor stabilization of the
visual panorama in response to imposed perturbations on the head and body, by tracking and
retinal stabilization of small targets, by recognition of shape and color, and by distance perception
in navigation (Gronenberg and Strausfeld, 1991). Sex-specific behavior including fast saccades in
response to small rapidly moving targets and the pursuit and interception of females by males
amongst some species of Diptera was shown by Land and Collet in 1974. The participation of a
system of position detectors beneath most of the retina that specifies the geometrical relationship
between the pursuer and the pursued is common to both sexes. However, it is argued that an
additional role is played by the retinal zone of high acuity in male flies. The responses of the motor
channels are weighted according to their location beneath the retina. Hence, those located laterally
to the fly body provide more excitation to pre-motor channels than those located medially. There is
a transfer of control when the target falls within 0◦ to 35◦ from the mid-line and the relative angular
velocity controls the angular velocity of the pursuer, not the error angle as in case of larger angular
separation from the mid-line. Gilbert and Strausfeld in 1991 argued that 50 pairs of descending
neurons (DNs) found in discrete clusters receive afferents from male-specific tangential (MLGs) and
columnar (MCol) cell that subtend the retinotopic mosaic.
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Acute Zone

Figure 2.6. Gronenberg and Strausfeld model. The velocity system is formed by MLG1 and 2 in the acute
zone which serves to control the neck muscle and steering flight muscle motor neurons. The position system
is formed by the LLP layer and its interaction with MLG3 is used to bring the target into the acute zone.
Together, these drive the yaw response in the head and body (HT, BT). Reproduced without permission
from Gronenberg and Strausfeld (1991).
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Electrophysiological recordings from MLG1 in flies show phasic ON responses to stationary flashes
and a panoramic flow-field, but not to ramp-like increases of light intensity in the acute zone. This
indicates:

1. These cells respond to the onset of motion without being directionally selective.

2. These cells respond to motions within the upper frontal field of view.

However, this stimulus does not elicit any response when presented to lateral ommatidia. To-
gether, this suggests that MLG1 is sensitive to “novel initiation” of motion by small contrasting
objects in the acute zone.

The modified Land and Collet model circuit is shown in Figure 2.6. This model predicts the
yaw torque compensations based on target error angle. Neurons that bridge the lobula and lobula
plate (LLP and LPL neurons) form the small-field position sensitive response layer. MLG1 and
2 are velocity sensitive target detectors responding to counter-clockwise and clockwise directions
respectively. The male-specific neurons discussed here are purported to play a decisive role in male
pursuit of female flies.

The remaining portion of the thesis is dedicated to the implementation of motion and target-
tracking algorithms. The next chapter discusses a monolithic implementation of a target tracking
sensor in VLSI.
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Chapter 3

Monolithic Target Tracking Sensor

Tracking a moving object from a moving platform in a cluttered environment is a computationally
demanding task for even the most sophisticated digital computers. Conventional systems that record
the object positions in a frame by frame manner and use pattern matching for tracking a target are
widely used. However, such systems require high-speed communication buses and hence increase
the cost and power dissipation of the system. Biologically inspired implementations of algorithms
for target fixation and pursuit provide an alternative solution to this computationally extensive
task. The low power, high speed, compact parallel processing units in an analog processor present
significant benefits.

In this chapter, the simulations of an FD cell based monolithic tracking sensor and its VLSI
implementation are presented. The FD cell based model is a model of the fly’s small target fixation
behavior. Previous research has revealed that the optomotor response and object fixation behavior
may emerge from the joint action of two parallel neural pathways. The HS and FD cells are thought
to provide these parallel pathways (Egelhaaf and Borst, 1993a). These pathways are differentially
tuned to extract the motion information necessary to perform both behaviors. The FD cell based
sensor has been chosen over the Gronenberg and Strausfeld type of circuit because of its simplicity
and ease of implementation. It must be noted that the Land and Collet circuit has complex wiring
arrangements and requires a larger variety of motion-computation elements.

In recent years, many neuromorphic analog VLSI parallel processors implementing related track-
ing algorithms have been developed. An analog implementation of centroid localization using focal
plane current mode circuits to find a global centroid was done in the early 1990s (DeWeerth, 1992).
Neuromorphic hardware emulation of visual tracking based on saccadic eye movement systems trig-
gered by temporal change (Horiuchi et al., 1994) and a smooth pursuit system based on visual
motion detectors (Etienne-Cummings et al., 1996) have also been accomplished. In primates se-
lective visual attention is involved in the generation of saccadic (Kowler et al., 1995) and smooth
pursuit eye movements (Khurana and Kowler, 1987). This selective attention is believed to be the
mechanism for extracting the activity of neurons associated with the target at appropriate time.
Koch and Ullman’s (1985) saliency map based attentional shifts were modeled by DeWeerth and
Morris (1994). A one-dimensional visual tracking chip was implemented by Horiuchi et al. (1996)
using analog VLSI techniques to model selective visual attention in the control of saccadic and
smooth pursuit eye movements in primates. A high-contrast detection and tracking system using a
current-mode hysteretic winner-take-all network has been developed by Indiveri et al. (2002).

Here the FD cell based small-field motion detector and its use as a target tracking sensor is
discussed. This sensor differs from all the above mentioned implementations of tracking systems
in two ways. First, it is based on a well understood model of the fixation behavior of the fly and
therefore has attributes that can be understood and characterized fairly easily. Second, the uses of
this sensor may extend beyond target tracking, since it is generally sensitive to motion discontinuities
with the background. It can be used as a small-field motion sensor for detecting small objects and
fixating on them.

The FD cell model, as presented in Chapter 2, has been modified to simplify the computations
and thus minimize the silicon area. The simulation results of the full FD cell model are presented
in the following section. The simplified model with its analysis and an extensive VLSI architecture
implementing this model are presented in the subsequent sections.
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Figure 3.1. Simulation results of the FD cell model. (a) The stimulus used for torque response generation.
(b) Torque response. The output is negative (counterclockwise yaw movement) if the activity is seen in the
left eye and positive (clockwise) for discontinuity in the flow-field in the right eye.

3.1 Simulation of the full FD cell model

In this simulation experiment, the torque-generating behavior of a simulated fly equipped with an FD
sensor, as modeled in Chapter 2, is tested. The fly is fixed in space and in angle such that it can only
generate torque responses. The visual field of the simulated fly is comprised of 100 photodetectors
and is divided into right (1 to 55) and left (45 to 100) halves (Figure 3.1a). Overlapping of the two
halves of the view field is used to model the acute zone, where sensors from one eye are activated by
activity on the other side of the head. The visual panorama includes 4 stripes located around the
midline of the fly. The two stripes closer to the mid-line are separated by 20 units, while the lateral
ones are separated by 12 units. This arrangement is similar to that of Reichardt et al. (1989), in
which the turning response of a fly was recorded. Three stripes out of four oscillate in phase with
an amplitude of 4 units, while the fourth stripe moves at a phase lag of 180◦. After half completion
of the experiment, the position of the lagging stripe is switched from one side of the visual-field to
the other (see Figure 3.1a).

The torque response of the robot is as shown in Figure 3.1b. When a motion discrepancy is
presented on the left side of the view field, the instantaneous turning response is largely negative
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and is shown by a solid line in the figure. According to the FD cell model, this instantaneous response
is coupled with a running time average to give the final output shown by a dotted line in the figure.
This final output response in the simulation is the sum of the instantaneous response and the running
average response weighted by a factor k = 5. The average output response is seen to be negative for
the first half of the experiment, indicating a counter-clockwise turning response. At t = 250 units,
the motion discrepancy moves to the right side of the view field, causing a discontinuity in the visual
motion field. This produces a positive response by the sensor indicating a clockwise turning torque.
These results match the simulation results by Reichardt et al. (1989) closely.

3.2 Simplified FD cell model

The biological basis of the FD cell based target fixation model has been discussed in Section 2.4,
and the simulation result for this model was presented in the previous section. A simplified FD
cell based model of the target tracking sensor for VLSI implementation is discussed in this section.
Hassenstein-Reichardt (HR) model based elementary motion detectors (EMDs) have been chosen
in this model. These detectors fulfill the requirements set by the FD cell based system. Instead
of being a pure velocity sensor, the HR model’s response is influenced by textural properties of a
moving pattern such as its spatial frequency and contrast (Reichardt et al., 1989). The output from
this EMD is split into positive and negative parts and fed as input to the target fixation circuit.

The processing elements of the simplified FD cell model are shown in Figure 3.2. The HR model
based EMD is the first processing stage for this sensor. This detector has been analyzed in detail in
Chapter 2. The output of this detector is split into its positive and negative components, v+

i and
v−

i respectively ( v+
i > 0 and v−

i > 0). In the biological model, the positive pool cell accumulates
the excitatory v+

i and a weighted fraction of the inhibitory v−
i (refer to Equation 2.17). Since the

inhibitory response of the pool cell approximates the common property of neurons that the reversal
potential of inhibitory synapses is usually closer to the resting potential than of excitatory synapses
(Reichardt et al., 1989), it can be neglected. This can be done without sacrificing the yaw-movement
control too much as was seen by the simulation results. These simplified pooling units (positive and
negative, and on the left and right side) thus perform the following function:

P+
r =

N∑
i

v+
r (i) (3.1)

P−
r =

N∑
i

v−
r (i) (3.2)

P+
l =

N∑
i

v+
l (i) (3.3)

P−
l =

N∑
i

v−
l (i) (3.4)

The cross connection of pool cells from the left side of the visual field to the right and vice-versa
forms the clockwise and the counter-clockwise response. It must be noted that the biological FD
model assumes only rotational motion of the fly. The motion detector response interacts with this
clockwise/counter-clockwise response of the pool cells just before the output cell. This response for a
sensor on the right side of the head is given in Equation 2.20. This equation has fitting constants β,
k∗, and q that are used to match the model’s results to electrophysiological recordings. These fitting
constants have not been explicitly included in this simplified model. The factor β, for instance, takes
care of the condition in which the summation of the response both from the left and right side of the
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Figure 3.2. Simplified FD Sensor (left eye). An array of HR model based detectors pool in their outputs
into two pooling units that sum the positive and the negative halves. These individual positive and negative
responses are normalized by the sum of corresponding pool cell and opposite pooled response from the
right eye. The normalized response from each EMD is then summed to generate the instantaneous output
response.



30

head goes to zero. In VLSI, the normalization circuit handles that condition without any explicit
representation.

The FD chip described below implements only one half of this model (either left or right).
However, two chips may be used to model the left and the right side sensor. The response of the
normalized small-field outputs in the simplified algorithm is given by:

y−
i =

v−
i

P−
l + P+

r
(3.5)

y+
i =

v+
i

P+
l + P−

r
(3.6)

In the biological model, these opposite responses pass through a non-linear channel and add up to
generate a final response R(t). This non-linearity suppresses the small responses, and expands larger
ones, thereby expanding the mean difference of these two signals. In VLSI, however, the non-linear
exponentiation behavior of the FD model has not been included for simplicity. Therefore, the small-
field output response of the simplified FD model is weaker as compared to its biological counterpart.
The response R(t) shown in Figure 3.2 must be computed for both left and right “eyes”. The sum
of the response of this output cell from one (left or right) eye is given as:

R(t) =
N∑

i=1

[y+
i − y−

i ] (3.7)

The final output of the small-field system is a difference between the left and right side FD chip
responses.

3.3 VLSI Design of Tracking sensor

This section discusses a VLSI architecture (see Figure 3.3) implementing the small-field motion
computation presented in the previous section. The EMDs have been modeled as a modified version
of Harrison’s HR model based chip (Harrison and Koch, 2000). The detectors are followed by a full-
wave current splitting circuit to divide the output into positive and negative parts. This output is
then fed to a current normalization circuit that mimics the synaptic interaction between the motion
detector outputs and the pool cells. An external current from the contralateral side sensor (Figure
3.3b) is also an input to the current normalization circuit. The VLSI implementation that we will
present accounts for this by the use of two chips, each implementation having a preferred direction
of motion for which the output of the chip is positive. The simplified FD algorithm discussed above
requires interaction between preferred and null direction of these two chips. Therefore, the two FD
chips are arranged in opposite orientation as illustrated in the figure. These two sets of outputs
from the positive and negative normalization circuit are subtracted, and then taken off-chip. The
sub-circuit components of this design are described below.

3.3.1 Adaptive Photoreceptor

Modified adaptive photoreceptors (Delbrück, 1993b) are used in this implementation for capturing
contrast information from the visual field (Liu, 1999). The adaptive photoreceptor has a continuous-
time output that attains low values for static signals and exhibits high gain for transient light
signals that are centered around a background adaptation point. Logarithmic encoding of input
illumination makes the response largely invariant to absolute light intensity. In Delbrück’s receptor,
the adaptation time constant is predefined at the design phase. The adaptation time constant of
this modified receptor is controllable via a bias voltage Vb. The modified adaptive photoreceptor is
shown in Figure 3.4.
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Figure 3.3. Block diagram representation of the FD chip. (a) Phototransduction takes place through
modified adaptive photoreceptors. The delay stage is modeled as a low-pass filter (LPF). Correlation between
delayed and non-delayed signals takes place in a current-mode Gilbert multiplier circuit. A subtractor circuit
computes the difference of the two adjacent Gilbert multipliers and inputs it to the full wave rectifier. This
circuit splits the output into a pure negative and a pure positive component. A normalization circuit takes
this single polarity current and normalizes it with respect to the sum of the same polarity response from
other pixels and an external input corresponding to the contralateral response from another FD chip. A
current subtraction circuit takes the normalized positive and negative outputs from the previous stage and
performs a subtraction to give the final output. (b) Two FD sensor chips acting as the left- and right-side
sensors are shown. As seen, when there is progressive motion of the imager the optical flow-fields for the two
sensors are in opposite directions (shown by arrows). The left FD chip is oriented in the opposite direction
from the right FD chip so that they both respond with positive motion outputs to the flow field vectors
shown. The black arrows indicate currents corresponding to the positive half, while the white ones show
negative half.
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Figure 3.4. Adaptive photoreceptor. (a) Circuit which is sensitive to contrast changes over a wide range
of illumination. (b) Adaptation-time controlling bias generation circuit.

The photodiode traps the incident photons and converts them into a current signal. A source-
follower feedback transistor Mfb sits on top of this photodiode and operates in the subthreshold
region, such that the source voltage of this transistor is logarithmic in the photo-current. This
feedback signal Vfb is nothing but a long-term mean response of the photoreceptor. This source
terminal is further connected to the gate of transistor Mn controlling the amount of current being
sunk by it. The current source for this transistor is provided by Mp. The transistor Mp has an
external bias Vprbias and together Mn and Mp act as an amplifying unit with the gain determined
by the ratio of the sum of transconductances of Mn and Mp to the the output conductance of the
amplifier. The feedback loop is comprised of a capacitive divider formed by C1 and C2. In parallel
to this capacitive feedback, transistor Madapt provides a high resistance feedback path to adapt out
slowly varying contrast signals. The adaptation time constant of this photoreceptor is controllable
through a bias voltage Vb, generated via a source follower configuration from the photoreceptor
output Vprout and an external bias Vadapt. This photoreceptor gives a wide range of intensity
indifferent responses.

The HR detector implemented by Harrison and Koch (2000) has a high pass filter circuit cas-
caded to the adaptive photoreceptor. This is not necessary since the adaptive photoreceptor itself
has a band-pass characteristic, which is sufficient for the present application. Thus, the present
implementation has an advantage over its predecessor in terms of smaller silicon area and fewer
external biases.

3.3.2 Low Pass Filter (LPF)

The HR detector has two delay stages that can be modeled as low-pass temporal filters. The common
gmC filter is utilized for this purpose. A P-type filter is used ensure that critical information is not
lost, which might happen due to a low common-mode input voltage in an N-type filter.

Figure 3.5a shows the transistor level implementation of such a filter. The bias current through
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Figure 3.5. Low pass filter (LPF) circuit. (a) Circuit performs the low pass filtering on the photoreceptor
output. (b) Symbolic representation of the circuit.

this gmC filter is controlled by a bias voltage Vtau, which thereby controls the time constant of the
filter. The op-amp equivalent circuit of the same is shown in Figure 3.5b. The input signal to this
stage is the phototransduction stage output, Vprout. The output current of this stage is given as:

C · dVprfilt

dt
= Ib · tanh

(
κ(Vprfilt − Vprout)

2 · VT

)
(3.8)

where C is the capacitance, Ib is the bias current controlled by Vtau, VT is the thermal voltage,
and κ is the back gate coefficient. For small differences, the hyperbolic tangent function can be
approximated as a linear function. So the above equation takes the form:

C · dVprfilt

dt
=

Ib · κ
2 · VT

· (Vprfilt − Vprout) (3.9)

Taking the Laplace transform of the above and manipulating the coefficients we get

Vprfilt = Vprout · 1
τ · s + 1

(3.10)

where τ is the time constant of the low-pass filter, given as:

τ =
2 · VT · C

Ib · κ =
C

gm
(3.11)

and the transconductance is thus

gm =
κ · (Ib/2)

VT
(3.12)
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Figure 3.6. Gilbert multiplier circuit. This circuit multiplies the photoreceptor response with the delayed
LPF output. The output is a represented by a current Imul (for details see text).

3.3.3 Gilbert Multiplier

The delayed signal derived from the filtering stage is to be correlated with the non-delayed photore-
ceptor response of the adjacent detector. The simplest mechanism of correlation is employed here by
multiplying the two signals. The Gilbert multiplier circuit (Gilbert, 1974) has been implemented as
seen in Figure 3.6. This implementation differs from Harrison’s implementation of the HR detector
in two ways. Firstly, a P-type circuit has been used in the Gilbert multiplier stages. Since the
photoreceptor and low pass filter outputs have a DC offset of one or two volts, the P-type circuit
ensures that all the transistors will operate in the saturation region. Secondly, Harrison has used a
high-pass filtering stage after the phototransduction to get rid of the DC bias (Harrison and Koch,
2000). This is achieved in this implementation by subtracting the long-term mean response of the
photoreceptor, Vfb, from both the photoreceptor response and the filtering stage output. This makes
our implementation more compact. It also has fewer external biases and is therefore more robust
to off-chip fluctuations. The Gilbert multiplier circuit operates for a small range of inputs with all
the transistors working in the subthreshold region. In this region, the MOS operation is similar to
BJTs, both having an exponential voltage-to-current relationship.

The Translinear Network (TN) theorem (Gilbert, 1975) is used to analyze this circuit. Consider-
ing the translinear loops between Vprfilt-Vfb and Vprout-Vfb, after solving the loop equations using
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Kirchoff’s laws and substituting these values we arrive at the following current equations:

I1 = Ib · eV2/VT

eV2/VT + 1
·
[

1
eV1/VT + 1

]
+ Ib · 1

eV2/VT + 1
·
[

eV1/VT

eV1/VT + 1

]
(3.13)

I2 = Ib · eV2/VT

eV2/VT + 1
·
[

eV1/VT

eV1/VT + 1

]
+ Ib · 1

eV2/VT + 1
·
[

1
eV1/VT + 1

]
(3.14)

where I1 and I2 are the currents in the lower two branches of the circuit ending in a current mirror.

The current Ib is the bias current regulated by a bias voltage Vgb, VT is the thermal voltage, and
voltages V1 and V2 are given as:

V1 = Vprfilt − Vfb and V2 = Vprout − Vfb (3.15)

The output current Imul is the difference between these two currents performed by the current mirror
stage at the bottom of the Gilbert multiplier. This current output is equivalent to the HR detector
subunit output. The difference of two such multiplying stages corresponding to two adjacent pixels,
gives the response equivalent to the HR detector.

Imul = I2 − I1

= Ib ·
(

eV2/VT − 1
eV2/VT + 1

)
·
(

eV1/VT − 1
eV1/VT + 1

)

= Ib · tanh
(

V1

2 · VT

)
· tanh

(
V2

2 · VT

)

For a small range of values of V1 and V2, this can be approximated as a multiplication circuit.

Imul = Ib ·
(

V1

2 · VT

)
·
(

V2

2 · VT

)

= Ib ·
(

Vprout − Vfb

2 · VT

)
·
(

Vprfilt − Vfb

2 · VT

)

Here, Vfb is the long-term mean of the photoreceptor and is subtracted to remove the DC offset
from the photoreceptor response. As seen by the equation above, the values of the delayed and
non-delayed signal can be twice the range of values for which the circuit behaves as a multiplier,
which is roughly a few hundred millivolts.

3.3.4 Full Wave Rectifier

A full-wave rectifier circuit is used to split the HR detector response into positive and negative parts.
This is a very common circuit comprised of two current mirror stages, one P-type and another N-
type as shown in Figure 3.7. A buffer with an NFET and a PFET connected to a common external
bias Vpol provides the path to the current in both directions. The P-type current mirror provides
the negative part (Ineg), while the N-type mirror provides the positive part (Ipos) of the HR detector
response.

3.3.5 Normalization

The full wave rectified responses from the HR detector are the inputs for the FD cell based model.
The pooling of the positive and the negative parts is done separately by the Gilbert normalizer
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Figure 3.7. Full wave rectifier circuit. The external bias Vpol is adjusted such that both positive and
negative currents are allowed to flow.
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Figure 3.8. Circuit used for normalizing each input current by the sum of all inputs.
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circuit (Gilbert, 1984). An n-channel normalizer is shown in Figure 3.8. This circuit is made up of
several translinear loops when the transistors are operating in the subthreshold domain, such that:

Iin(i)Iout(j) = Iin(j)Iout(i) ∀i, j (3.16)

The bias current Ibias controls the total output current flowing through this circuit with

Ibias =
n∑

i=1

Iout(i) (3.17)

Solving for all the input/output currents in the translinear loops, we get:

n∑
i=1

Iout(i) =
Iout(j)
Iin(j)

·
n∑

i=1

Iin(i) (3.18)

which is nothing but,

Ibias =
Iout(j)
Iin(j)

·
n∑

i=1

Iin(i) (3.19)

Thus, each of the output currents is a normalized version of the input current and scaled according
to the available bias current.

Iout(j) = Ibias · Iin(j)∑n
i=1 Iin(i)

(3.20)

As discussed earlier in this section, in the case of a tracking sensor, response from all the HR
detecting units as well as external current from the other side of the visual field are fed to two
separate positive and negative normalization circuits. Assuming the positive and negative response
on the right side of the visual-field to be I+

r (i) and I−r (i), and external currents as I+
left and I−left,

we have the following positive and negative normalization current outputs:

I+
norm(i) = Ibias · I+

r (i)∑n
j=1 I+

r (j) + I−left

(3.21)

I−norm(i) = Ibias · I−r (i)∑n
j=1 I−r (j) + I+

left

(3.22)

The orientation of the two FD sensor chips in space are opposite of each other. This takes care that
the preferred direction response of both left and right side sensors is positive. In the above equation,
let us consider the scenario when all Iin currents are zero. This implies that the gate voltage of
the NFET mirror circuits are all tied to zero (see Figure 3.8). This forces the bias transistor deep
into the triode region such that the current flowing through it is only leakage current contributed
by all the n-channels of the normalizer. The normalized current outputs of all channels under this
condition are close to zero.

This normalized output from each processing unit implements the simplified FD cell model. A
circuit representation of all the stages present in the pixel is given in Figure 3.9.

3.3.6 Serial Scanners

The response from the normalizer circuit network is read out by serial scanner circuitry. Each pixel
in the two-dimensional array gives out a small field current response. This output is scanned by
horizontal and vertical scanning circuits. The scanner circuits in the chip are based on the scanners
proposed by Mead and Delbrück (1991). The scanners operate on a single-phase clock. The design
of vertical and horizontal scanners is similar. Each scanner has a shift register to store a binary
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Figure 3.9. Circuit diagram showing all the stages in a FD pixel (within the dashed box). The photoreceptor
transduces light activity in front of the sensor into electrical signals. A low-pass filter acts as a delay-stage
and gives a delayed response corresponding to the photoreceptor signal. This delayed response is multiplied
with the instantaneous response of an adjacent photoreceptor by the Gilbert multiplier circuit. Another
Gilbert multiplier correlates the direct photoreceptor response of the pixel with a delayed response from the
adjacent pixel (photoreceptor and low-pass filtering circuits for the other pixel are shown). The difference
between the outputs of these two multipliers is equivalent to the response of a HR detector. A full-wave
rectifier stage subtracts and then separates this output. The positive and negative currents are normalized
by two normalization circuits. An off-pixel normalization bias circuit regulates the total current flowing
through the normalizer. The difference of these two normalization circuit outputs is the small-field response
of an individual FD pixel. This output is read out using serial scanners.
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state. According to the input bits, this register selects a particular row or column. A logic high in
a flip flop of the horizontal scanner selects that particular row. Similarly, a logic high in a flip flop
of a vertical scanner selects that particular column. The entire chip can be scanned by continuously
shifting bits from one flip flop to the other. To get a global response from the chip, all the flip flops
can be made to go high. This output corresponds to the small-field response from one side of the
small-field (SF) detector given in Equation 3.7. A particular row and column can be selected by
sending the appropriate number of clock pulses. By selecting a particular row and column data can
be read from the same pixel continuously. More details about the circuitry involved can be found
in Mead and Delbrück (1991).

3.4 Simulation Results

Simulations of the FD chip have been done using the Analog simulator (Gillespie and Lazzarro,
2003).

3.4.1 HR Detector Implementation

The first simulation has been done for the HR type EMD. The detector needs input from at least
two adjacent photodetectors to give a motion output. As seen in Figure 3.10, the input to the two
adjacent photoreceptors is taken to be sinusoidal. The solid (darker) wave leads the dashed (lighter)
one by 90◦ in the initial part of the simulation. The solid wave is an input to the left photodetector
and the dashed one to the right as in Figure 2.3. The outputs of the photodetectors are passed
through a temporal filtering (delay) stage and then correlated with the direct output of the adjacent
photodetector, using the Gilbert multiplier circuit. The response from two such multiplier circuits
when subtracted gives a direction selective output as seen in the lower waveform in Figure 3.10.

The input waveform in the figure has three phases. First, when the darker (solid) one leads the
lighter (dashed) by 90◦; second, when both are in phase; and third, when the lighter one leads the
darker one by 90◦. The corresponding response from the detector circuit is shown in the waveform
beneath it. The detector circuit is tuned such that its preferred direction (output being positive) is
left to right. Thus, when the darker wave leads the lighter one, the output is seen to be positive.
When both the lighter and darker waves are in phase, the output settles to zero as predicted by the
HR model. This indicates no apparent motion in the field of view. When the lighter wave leads the
darker one, the output goes negative indicating that motion is taking place in the null direction.

3.4.2 FD Pixel Implementation

The output of the EMD stage is an input to the FD sensor after its output is split into positive and
negative responses. In a second simulation four pixels were used to compute the small-field response.
The input to the FD sensor was taken from the HR detector stage. It was then processed by the
normalization circuit to generate an individual small-field response for each pixel. A target moving
opposite to the background in the visual field of the sensor generates an opposite response in the HR
detector. This input was simulated by presenting an out of phase current to the normalization circuit.
The out of phase pixel was therefore considered as the one looking at a small moving target, while
the other three pixels are looking at the background. Figure 3.11a shows the individual response
of two different pixels in the sensor under three different conditions. For the condition where there
was no target in the view field, all the pixels were presented with in-phase inputs. The response of
the first pixel was enhanced when a target was in its view-field (different motion pattern compared
to the background). The responses of all other pixels, including the second pixel under study, were
suppressed in this condition. If the case of no target, all the pixels show similar response. This is
shown in the middle portion of the graph. When the target moved out of the view-field of the first
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Figure 3.10. Simulation results from the HR detector. The top two traces are a sinusoidal-grating stimulus
presented to two adjacent photoreceptors. The phase shift is 90◦ (for rightward motion) from 0.2 − 0.27
ms, 0◦ (no motion) from 0.27 − 0.32 ms, and −90◦ (leftward motion) from 0.32 − 0.4 ms, and the output is
correspondingly positive, zero and negative based on the detector orientation.
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Figure 3.11. Simulation results for the small-field motion detector. (a) Output from a single pixel is shown
for three conditions: (i) when there is a small target moving in front of the pixel (large response), (ii) when
there is no target in the entire view-field, and (iii) when object is in the vicinity but not in front of pixel
under study (suppressed response). (b) Summed output over the entire SF detector is shown. Similar stimuli
are presented to all except one pixel that is either to the left side or to the right side of the view field. The
SF detector response is negative for the target on the left side, zero if no pixel sees the target, and positive
if the target is on the right side.
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pixel and was in front of the second pixel, its response became similar to other background pixels,
while the response of the second pixel, now looking at the target, was enhanced.

3.4.3 SF Detector Implementation

Two FD chip sensors acting as the left and right eye form the SF detector unit. The output
corresponds to the torque response as given by Equation 2.22. Figure 3.11b shows the entire small-
field response of the SF detector. This result was obtained by subtracting the simulated response
of two individual FD sensors. The target is either presented to the left side sensor or the right
side sensor. In a third condition, the target has the same motion direction as the background.
The small-field response is summed up across the pixels from two separate sensors representing
the left and the right side to get a global target tracking response. This response can be seen to
produce an instantaneous yaw-turning torque response. It is negative and tends to rotate the body
in the counter-clockwise direction when the pixel sees the target moving on the left side. When
the background and the target are in phase (no relative motion), the target is undetectable and the
response goes to zero. This is the middle portion of the response in the figure. When the target is
presented on the right side, the output of the SF detector is a positive yaw-torque indicating motion
in the clockwise direction.

The FD chip has three types of outputs: (i) response from the HR detector summed over the
entire chip, (ii) small-field response from individual pixels, and (iii) sum of small-field responses of
the entire chip. The individual small-field response from each pixel can be scanned out using the
peripheral scanner circuit. By the shift operation of the register, a logic ‘1’ is loaded in the flip-flops
corresponding to the row and the column of the pixel. Thus, the small-field response of this pixel is
read out. For a global small-field response from the chip, all flip-flops in the horizontal and vertical
scanner circuits are loaded with logic ‘1’. This allows the response from all the pixels to add on a
common signal line according to Kirchoff’s current law. This global small-field response could be
used to implement a target tracking agent.

3.5 Characterization

The FD sensor chip has been fabricated through MOSIS in the standard 1.6 µm process. Figure 3.12
shows the layout of a small-field pixel, and Figure 3.13 the complete chip layout. The resolution of
this sensor is 13×6 pixels. This chip has been characterized and preliminary data has been collected
at two levels: first for the HR detector, and second for the small-field normalized detector output.
The characterization was done using computer simulated visual patterns to mimic background and
object motion.

3.5.1 HR Detector

The HR detector on this chip produces a global current output which is the sum over all the pixels.
We presented a sinusoidal grating of spatial frequency 0.12 cycles/chip-pixel at a temporal frequency
of 2 Hz. The response from the FD chip is shown in Figure 3.14. The response is shown for three
conditions: (i) for a rightward moving grating; (ii) for a grating moving orthogonal to the sensor
orientation; and (iii) for a leftward moving grating. The mean responses for all three stimulus
conditions are indicated on the graph. The mean separation between the left and right moving
grating is around 500 mV and clearly indicates the direction of motion. By increasing the current
through the Gilbert multiplier, this output can be further expanded.

3.5.2 Small-field Normalization Detector

The second set of characterizations were done for the small-field (SF) detector units. The visual
stimulus was generated by a computer software and displayed on an LCD screen (see Figure 3.15).
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Figure 3.12. Layout of a pixel of the FD chip showing details of the various processing stages.
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Figure 3.13. FD sensor chip. (a) Layout as drawn in the L-Edit tool with an array size of 13 × 6. The
chip was fabricated in a 1.6 µm process with a die size of 2.2 mm × 2.2 mm. (b) Photomicrograph of the
fabricated chip.
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Figure 3.14. Response from the HR detector on the FD chip. A sinusoidal moving grating was presented
as the visual input with a spatial frequency of 0.12 cycles/chip-pixel and a temporal frequency of 2 Hz.
The response is a sum over 72 processing units. The mean response to the rightward moving stimulus is
above the mean response from an orthogonal stimulus. The mean response from a leftward moving grating
is below the orthogonal stimulus response. Thus the sensor chip indicates the direction of motion in the
mean response.
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Figure 3.15. Stimuli for the small-field unit with three different background extents. The visual field is
shown for three conditions. The target occupies only a two chip-pixel square area of the visual field while the
background pattern’s size varies. (A) The target and the background occupy only a two chip-pixel square
area of the visual field, and they exactly overlap in this condition. Therefore, the background is not visible.
(B) The background pattern nearly occupies half of the visual field with the target on the left edge. (C)
The background pattern covers the entire visual field in this condition. The extent of the target remains the
same as in the previous two conditions. The phase of the target with respect to the background is varied
for different experiments.

The visual stimulus for this experiment consisted of a sinusoidal grating as the background and a
smaller grating on top of it serving as the target. The discontinuity in the optical flow-field causes
the small-field output in the region of the target to be different from the overall response from the
chip. The normalization circuit then enhances this aberration such that the response from the pixels
activated by the object dominates the output. The response from a single pixel seeing the target
was read out by using the serial scanner circuitry. Figure 3.16 shows three traces recorded from
the FD chip. It shows the response of an individual small-field unit under three different stimulus
conditions as shown in Figure 3.15. The stimulus is such that the background either covers only the
pixel under study, or half the extent of the chip, or the entire chip, while the target is always in the
same place. First the target and the background move together in the rightward direction (stimulus
condition 1 in Figure 3.16). Then, the background keeps moving to the right while the target moves
towards the left (stimulus condition 2 in Figure 3.16). The target now keeps moving towards the
left while the background switches direction such that both move leftwards (stimulus condition 3
in Figure 3.16). It must be noted that the visual stimulus for the SF unit being stimulated by the
target has not changed between stimulus condition 2 and 3, still the response shown in graph C2 is
larger as compared to C3 in Figure 3.16. The background extent corresponds to three cases discussed
in Figure 3.15A-C. The graphs A1, B1 and C1 show the response of the SF unit for the rightward
moving grating and the target. The graphs A2, B2, and C2 show the response when the target
is out of phase by 180◦ with respect to the background still moving rightwards. We see that the
normalization due to the background does not affect the SF unit output in this stimulus condition.
The graphs A3, B3, and C3 show the in-phase movement of the target and the background towards
the left. In C3, due to the normalization of the response because of the large background pattern,
the output is smaller as compared to A3. For B3, the background pattern’s extent is about half of
the visual field, so the normalized output is larger than C3 but still smaller than A3.
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Figure 3.16. Response from an SF unit on the FD chip. The response from the FD chip has been recorded
for three stimulus conditions and for three background extents. The background and the target move together
towards the right first, then the target switches direction and moves towards the left while the background
is still moving towards the right, and finally both the background and the target move together towards the
left (stimulus conditions 1, 2 and 3 respectively). The extent of the background pattern was varied as shown
in Figure 3.15 and corresponds to the cases A, B and C respectively. The spatial frequency of the stimulus
was set at 0.12 cycles/chip-pixel at a temporal frequency of 2 Hz. The outputs for the rightward moving
target and background are shown in graphs A1, B1, and C1. The response in the cases A2, B2 and C2
remain almost the same when target is present immediately in front of the pixel being recorded, and all the
remaining pixels are looking at the background. However, the response to the leftward moving grating was
observed to be suppressed due to the normalization over the background extent. It is clearly seen that the
normalization over a lower number of pixels (smaller background extent) has a larger response as compared
to the case where the background covers the entire visual field (C3). When the background and the target
exactly overlap, we see that due to no normalization, the small-field output is equal to the leftward moving
background.



48

10 20 30 40 50 60 70
0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

Area of pixels in the background (chip−pixel square)

M
ea

n 
re

sp
on

se
 o

f t
he

 F
D

 c
hi

p 
of

fs
et

 b
y 

1.
2V

 (
V

ol
ts

)

Orthogonal stimulus
Target moving left, background moving right
Background moving right, target moving right
Background moving left, target moving left

Figure 3.17. Mean response of the small-field unit on the FD chip versus area of pixels stimulated by
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pixels being stimulated by the background increases. The small-field output for the target remains almost
the same.
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In another experiment, it was also seen that the output where the target and the background
move in opposite directions does not change much in all three conditions. The changes in the mean
response of the small-field output under various intermediate stimulus conditions were plotted to
show the affect of normalization on the background motion. As seen in Figure 3.17, the mean
response for the leftward moving background reduces as the number of pixels being stimulated by
the background increases. The SF output for the target moving opposite to the background remains
nearly a constant. This preliminary data clearly suggests that the response of the small-field detector
is stronger for small targets as compared to larger background motion. Thus, it can indicate the
presence of a target in the view field and therefore may be used as a target tracking sensor unit.

3.6 Summary

These preliminary characterization results are presently being studied for doing a complete charac-
terization of this chip. The experiments have revealed that the output is very sensitive to the full
wave rectifier bias and we are presently working on suggesting an alternate robust circuit implemen-
tation.

The compact nature of this design makes a very attractive monolithic tracking unit with some
external control circuitry. However, the resolution of this circuit is insufficient for practical real-time
applications. A need for a high-density front-end chip with the processing distributed to sender
and receiver chips is therefore felt. The next chapter explains the necessity of modular design and
describes a sender chip designed and fabricated to improve upon the monolithic tracking sensor.
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Chapter 4

Modular Architectures And Spiking-Neuron Sensor

In the previous chapter we presented a monolithic implementation of the FD chip that may be used
as a target tracking sensor. In any autonomous mobile robot, there might be several visuo-motor
processing units subserving the agent’s movement in the arena such as a target tracking system,
an obstacle avoidance system, and a course control system. Having separate visual information
gathering units for all the subsystems is not an efficient way to design a complex system like this. A
solution to this problem is a common contrast sensitive transducer chip as the front-end. It shares
visual information among various subsystems making the entire system more compact. This chapter
describes such modular architectures for biomimetic systems, and discusses the implementation of
a spiking-neuron sender chip.

4.1 Modular VLSI Neuromorphic Architectures

Monolithic neuromorphic architectures perform computations in the focal plane and therefore are
well suited for parallel computations in a neuromorphic system. The only problem, however, is that
when the computations begin to increase so does the size of each pixel. This leads to lesser resolution
and lower fill factor (the percentage of pixel area dedicated to phototransduction). Thus, the amount
of computation that can be done at the focal plane level is limited. The solution to this can be taken
from the visual system of insects, where the computation is neither done totally in the focal plane
nor in an end processor. The answer is to distribute the processing along the pathways through
which information is passing. This leads to modular image processing architectures. The modular
solution also means that some information, if not all the raw data, is required to be transferred to
another stage where the remaining computation is performed. Hence, a time efficient, low power
and high-speed communication protocol is required between these intermediary processing units in
order not to lose the advantage over a monolithic architecture. In the nervous system, information is
encoded as action potentials that are transient changes in the voltage across the membranes of nerve
cells. A chain of action potentials emitted by a single neuron is called a spike train - a sequence of
stereotyped events which occur at regular or irregular intervals. The Address-Event Representation
(AER) protocol mimics this behavior, but in contrast to parallel axons in the nervous system, it
has a serial bus relaying the information. The next subsection discusses this asynchronous digital
communication protocol for interchip communication.

4.1.1 The Address-Event Representation (AER)

Frequency encoding of the position and time of an event over an asynchronous serial bus for neu-
romorphic applications was first proposed by Mahowald (1992). The most basic form (see Figure
4.1) has two digital control lines in the form of request (REQ) and acknowledge (ACK), and several
address lines to associate this request to its point of origin. There are two characteristic parameters
defining the performance of this protocol:

1. Transmission latency is the time interval between the onset of the stimulus and event
generation at the REQ line.

2. Temporal dispersion takes place because of the serialization of the bus due to sharing of the
interchip REQ signal, and mismatch between the processing-units (pixels) transmitting this
event train.
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Figure 4.1. AER Protocol. (a) The sender and receiver communicate over request (REQ) and acknowledge
(ACK) lines. The position of the activity is communicated by the address (ADDR) lines. (b) A four-phase
asynchronous handshake initiated by a request with valid address is shown. The receiver latches the address
and raises the ACK, which leads to the falling of REQ and subsequently ACK lines.
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For an ideal channel, the transmission latency and the temporal dispersion should be zero. In a
real system, these parameters have finite values that define the system performance. In a biological
system, the retina sends spatiotemporal patterns of light over the optic nerve as spike trains and
dendritic integration converts them back into a continuous signal (Boahen, 2000). The activity of a
neural array can be represented as an ordered list:

ξ = {(x0; t0), (x1; t1), . . . (xi; ti), . . .};
t0 < t1 < · · · ti < · · ·

where xi represents the location and ti the time of occurrence. Since the channel is real time, the
time information is redundant. Hence, the above can be re-written as:

ξ = {(x0, x1, . . . xi, . . .};
t0 < t1 < · · · ti < · · ·

This real time code is called the address-event representation. There are a number of other issues
related to the AER protocol. Since there is a single interchip request line, the channel can either
be pre-allocated or dynamically appropriated to the active pixel. The occurrence of simultaneous
activities on two pixels can lead to a contention for the request bus. This leads to collision of events
and a corrupt signal on the request line, if it is not dealt with in the design. The use of an arbiter
to queue up the events or disregard them in the case of collision is a solution. However, queuing of
events leads to temporal dispersion, reduction in the channel capacity, and lengthening of the cycle
time. Boahen (2000) has done a detailed analysis of this stochastic process. The AER protocol has
been used over the years for asynchronous communication between neuromorphic analog chips. The
next section discusses various implementation of this protocol in the design of modular biomimetic
systems.

4.1.2 Asynchronous Digital VLSI for Neuromorphic Applications

The AER inter-chip communications strategy was first used to transmit visual signals out of a sili-
con retina by Mahowald and Mead (1991). However, these attempts were dogged by cross-talk and
timing problems. The progress made in the field of asynchronous digital VLSI systems in recent
years has strengthened and formalized the AER protocol (Martin et al., 1989). Several variants and
specializations of the scheme have emerged in the last few years. Boahen (1996a) interfaced two
silicon retinas to three receiver chips to implement binocular disparity-selective elements. Venier
et al. (1997) used an asynchronous interface to a silicon retina to implement orientation-selective
receptive fields. Deiss et al. (1998) implemented a silicon model of primate visual cortex using in-
terchip communication, and DeWeerth et al. (1997) implemented a model of leech intersegmental
coordination. Grossberg et al. (1997) demonstrated the use of EPROMs for linear or nonlinear ad-
dress re-mapping in interchip communication. Kumar et al. (1998) provided an auditory front-end
chip with an asynchronous interface for further off chip processing. Boahen (1996b) published a
multi-chip vision processor that computes motion by emulating a model of primate motion com-
putation. Kalayjian and Andreou (1997) created a photosensitive sender chip, and Higgins and
Koch (2000) designed a sender-receiver system that computes 2-D optical flow vector field from
edge information. The arbitration scheme used by Boahen (1999) takes care of collisions effectively.
However, it increases the latency due to queuing, and the temporal dispersion increases. Landolt,
Mitros, and Koch (2001) have designed a scheme that discards colliding events and allows only
collision-free events to be transmitted off chip. It is this scheme that we will employ in our sender
chip communication protocol.

The Landolt, Mitros, and Koch AER scheme: This AER protocol uses a four-phase asyn-
chronous handshake between the sender and receiver guaranteeing reliable communication over the
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two control lines, REQ and ACK. The log2 N number of address lines, for an N-pixel array, is used
to communicate the spatial position of the event to the receiver. The average latency of this scheme
as published is about 45ns (Landolt et al., 2001). A diagram of the information flow of this scheme
is presented in Figure 4.2.

Let us consider the case in which only a single pixel is activated by the stimulus (no collision).
This launches digital spikes on the two asynchronous lines, EVy and EVx, one shared along that
column of pixels and the other along that row. Every row and column line has an SR-latch controlled
by the input enable signals IEx and IEy, respectively. When the system is ready to accept a new
event, the IE signals are active and allow the event to be latched. When the event has been latched,
the CATCH signal goes high. This acts as an acknowledge signal for the event transmitting pixel,
and this pixel resets. The ANYx and ANYy signals indicate that an event has been caught, which
in turn causes the input enables (IEx, IEy) to become inactive, thereby preventing any new events
from being latched. A log2 N encoder then encodes the latched address. The outputs of the encoders
directly connect to the external ADDR bus and are also input to the validity checking circuitry.

The addresses are encoded in a way that allows verification that no collision has occurred. A
dual rail bit representation provides a means to verify the on chip collision occurrence. In this
representation, one line is raised high to represent logic ‘1’ and another line is raised high for logic
‘0’ (see Figure 4.3). The lines in their idle state are passively pulled low by pull-down transistors,
and are actively pulled high when an event on the corresponding row or column occurs. Thus, both
lines low indicates an idle state, both lines high indicates an invalid state, and one active line at a
time indicates valid address. The invalid state results from one pixel attempting to set an address
bit to zero while a different pixel tries to set it to one. From these ADDR and ZEROS lines, only
one of each pair of lines is taken off chip (the ADDR line), while the other is used to perform error
checking on the chip (the ZEROS line).

In case of no collision, a valid address is detected and VALx and VALy go high. This in turn
results in REQ being raised to signal the off chip circuitry that an address awaits reading. When
the address has been read, ACK acknowledges and the reset procedure begins. First, CLR is raised
signaling that the event latches should be cleared. When the latches are cleared, the addresses in
the address encoder are reset, VALx and VALy fall, and finally RESx and RESy go high to indicate
that the address lines have reset. Then, CLR falls and in turn allows IEx and IEy to get activated,
ready to latch the next event.

It is also possible that two events might occur very closely in time. The ideal condition would
be that input enables inactivate immediately when a single event is caught in order to prohibit
simultaneous latching of two events. However, because disabling the latches takes about 1.5ns
(Landolt et al., 2001), two events may be simultaneously latched. As described above, both the lines
representing the bits in which the two requesting pixels differ are raised. Thus an invalid address
gets detected. CLR is raised in this case and the reset procedure proceeds as above, but REQ never
goes high. This avoids wastage of time and error-checking resources necessitated by sending invalid
addresses off chip.

Several events may occur while an event is being processed and IEx and IEy are inactive. These
active pixels continue to attempt to broadcast their event to the latches until the latches acknowledge
their data. On the successful completion of the request from a pixel, the latches are cleared out
and the input enables (IEx and IEy) are reactivated. Upon activation of the input enables, latches
immediately receive and latch all events which occurred while the first event was being processed.
This cycle continues as described above. In case of a single event, a valid request and address are
transmitted. If multiple events occur, collision results in an invalid address on the lines and the
system resets without off-chip communication.

This version of the AER protocol has been chosen for implementation because of its low latency
and temporal dispersion. The following section presents a spiking-neuron sender chip employing the
Landolt-Mitros-Koch AER scheme.
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Figure 4.2. Schematic showing the Landolt-Mitros-Koch AER Signal-flow. EV is the event generated by
a pixel; CATCH is the acknowledge signal from the peripheral circuitry to the pixel; ADDR is the address
bus; ANY indicates that the address is latched; IE is the enable signal for the latch; VAL indicates a valid
address; INV an invalid address; RES indicates that the address line has been reset; CLR initiates the
clearing of the encoders; and REQ and ACK are used for handshaking between the sender and the receiver
in the event of valid address. The dashed box represents the on chip circuits. The SR event latch circuit is
repeated according to the number of rows and columns in the chip. Off chip REQ, ACK and ADDR buses
are also shown. Reproduced without permission from Landolt, Mitros, and Koch 2001.
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Figure 4.3. Address (ADDR) and Zeros (ZEROS) line based arbitration. Zero on both lines indicates an
idle state and the pixels can transmit requests. A high on the ADDR line indicates a logic ‘1’, and a high
on the ZEROS line indicates a logic ‘0’ code for the address. Simultaneous activity on both the lines is an
invalid state, and such a request is terminated.

4.2 Circuit Design of the Spiking-Neuron Sensor

The VLSI implementation of a sender chip acting as the visual front end of a target tracking system
or other similar visual system is presented here. This chip consists of pixels that convert contrast
information into electrical signals and relay this information as frequency encoded digital events over
an asynchronous serial bus. The design of a phototransducing pixel and surrounding AER arbitration
circuit is presented in this section. A block diagram representing the various sub-circuit stages for
this implementation is shown in Figure 4.4. The pixel resembles the functioning of a spiking neuron
and sends a train of spikes off the chip to communicate the edge locations. There are several types
of spiking-neuron models ranging from detailed biophysical ones to the integrate-and-fire type (for
an excellent review, see Gerstner, 1998), which form the basis of spiking-neuron networks (Maass,
2002). A class of more detailed models, known as conductance-based ones, have their origin in the
classic work by Hodgkin and Huxley in 1952. Hodgkin and Huxley summarized their experimental
studies of the giant axon of a squid in four differential equations. The main equation describes the
conservation of electric charge on a piece of membrane capacitance of a neuron under the influence
of a current and a voltage (for a detailed mathematical analysis see Cronin, 1987). The Hodgkin
and Huxley equations can be regarded as describing the variations of membrane potential and ion
conductances that occur naturally at a fixed point on the axon. A different approach takes the neuron
as a leaky integrator which is reset if firing occurs (Stein, 1967). Our sensor adopts this scheme
of integrate-and-fire, and generates spikes corresponding to the activity of the photoreceptor. The
generated spikes (called events) are then trapped by latches and using the Landolt-Mitros-Koch
AER scheme; these events can then be transferred to a receiver unit for further processing. The
circuit details of all the stages are presented in the next few subsections.

4.2.1 Adaptive Photoreceptor

The local light intensity is transduced using the adaptive photoreceptor (Liu, 1999). This circuit
is the same as has been described in Section 3.3.1. This phototransduction results in two output
signals: Vprout, the instantaneous response of the detector, and Vfb, which represents the long-term
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Figure 4.4. Schematic representation of circuit stages in the spiking-neuron chip. The block marked pixel
is a single processing unit, and this chip is formed by a 5× 4 array of these pixels (indicated by dots). Each
pixel has an adaptive photoreceptor that transduces visual information into electrical signals. These signals
are conditioned and amplified by a transconductance amplifier stage. This contrast information is rectified
by a full-wave rectifier circuit block. The rectified responses (Ineg and Ipos) are used to generate trigger
pulses (TRIG) in two integrate-and-fire blocks of differing polarity. Two event generation circuit blocks
then communicate with peripheral AER circuits to communicate this activity. The event is latched if the
address line is idle. The AER circuitry is similar along X- and Y-axes. These blocks communicate with a
handshaking block that generates the request signal.
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Figure 4.5. Operational Transconductance Amplifier (OTA). The amplified current output is bidirectional
based on the difference of the two inputs.

mean response of the detector (Delbrück, 1993a). The output of this detector stage has a band-pass
characteristic as it enhances the sharp contrast variation information. This is highly desired as this
chip is to be used for visuo-motor applications to transfer contrast information across to a receiver
chip.

4.2.2 Transconductance Amplifier

The response from the photoreceptor Vprout has contrast information encoded in it, which rides
over the average background illumination response Vfb. To enhance the contrast information, an
operational transconductance amplifier (OTA) stage is used. This amplifier generates a current,
which is a function of the difference between the two input voltages Vprout and Vfb (see Figure
4.5). The bottom transistor is used as a current source. The bias current Ib is controlled by the bias
voltage Vdiff .

The current through the two differential arms, I1 and I2, bears an exponential relationship to
the differential voltage inputs. All the transistors in the OTA work in the subthreshold region and
the relation is specified as:

I1 = I0e
κVprout−V

I2 = I0e
κVfb−V

and these two currents are made up of the bias current Ib.

Ib = I1 + I2 = I0e
−V

(
eκVprout + eκVfb

)
The current mirror at the top of the OTA subtracts the current in the positive arm of the

amplifier from the current in the negative arm to give an output current Iout as a function of the
difference of the two inputs.

Iout = I1 − I2

= Ib tanh
κ(Vprout − Vfb)

2
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Vfwbias
VfbVprout

Vdiffbias

Vleakpos

Vleakneg

Ipos

Ineg

Full-wave RectifierOTA

Iout

Figure 4.6. Analog part of the neuron pixel showing OTA stage and the separation of negative and positive
currents by using a full-wave rectifier circuit.

This current is bidirectional depending on the relative values of the differential inputs. When
the long-term mean response Vfb is greater than the instantaneous output Vprout, the current is
negative, and vice-versa. This bidirectional current thus specifies changes in contrast. For details
about the analysis of this circuit, see Mead (1989).

4.2.3 Full Wave Rectifier

A full wave rectifier circuit is used to split this bidirectional current into two unidirectional currents.
This is a very common circuit comprised of two current mirror stages, one P-type and another N-type
as shown in Figure 4.6. A buffer with an NFET and a PFET connected to a common external bias
Vfwbias provides a path to the current in both directions. The P-type current mirror provides the
negative part (Ineg), while the N-type mirror provides the positive part (Ipos) of the response. The
rectified current may be nonzero even when there is no activity at the photoreceptor due to leakage.
This leakage current is subtracted from the rectified currents by an external bias (Vleakneg and
Vleakpos). This response is fed to the digital stage that implements the integrate-and-fire circuit.
This circuit has been discussed earlier in Section 3.3.4.

4.2.4 Integrate-and-Fire (IF) Circuit

The simplified description of a neuron’s function may be summarized in two steps: the integration
of synaptic inputs leading to membrane depolarization, and the initiation of an action potential that
may propagate to the output terminals of the neuron. Such neuron models are called “integrate-
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bifp

TRIG

bifp

Iin

bifn

TRIG
TRIG

(a) (b)

Figure 4.7. Integrate-and-Fire circuits (from Landolt et al., 2001). (a) P-type circuit, the input of which
is a current sink at node Iin. (b) N-type circuit, the input of which is a current source at node Iin.

and-fire” models. The integrate-and-fire (IF) circuit implemented here mimics the leaky-IF model
of neurons (Landolt et al., 2001). Since input currents may go in either direction in general, there
are two different IF circuits; one for current being sunk by the circuit (N-type) and the other which
requires a sink to dump the current (P-type) as illustrated in Figure 4.7. Based on the polarity of
incoming current, a capacitor in the IF circuit provides a feedback path from the output and toggles
it after a certain amount of charge accumulation. A bias voltage bifn controls the threshold voltage
to make the capacitor spike. Another bias bifp controls the reset time of the output, and thereby
determines the maximum spike generation frequency of the pixel. The N- and P-type IF circuits
produce TRIG and TRIG signals respectively, which are captured by the latches in the arbitration
block. The TRIG signal is passed through an inverting stage to utilize a common latch for both the
positive and negative pulse trains. This integrate-and-fire scheme thus produces a train of spikes
with a frequency proportional to the current input to the IF circuit (Mitros, 2002).

4.2.5 Event Generation

The pulse train generated by the IF circuit is fed to an event generating circuit (Landolt et al., 2001).
There are two such blocks in each pixel, one to capture the event-train of the positive current, and
the other for negative current. Figure 4.8 shows the transistor level implementation of this stage.
Events are generated based on the availability of external address lines. Two signal lines, CATCHx
and CATCHy, convey this information from an external latch to the event generation circuit. These
lines are low when the latch is ready to accept an event, and is raised high when the address lines
are not available for the pixel.

This asynchronous circuit transmits an event based on the same threshold as the IF circuit. This
is controlled by the bias voltage bifn. When the external latch is busy, the CATCHx and CATCHy
signals are high. This makes the NFETs connected to these signals to be on. This keeps the circuit
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bifn

CATCHy

CATCHx

TRIG

EVx

EVy

FIRE

Figure 4.8. Event generation circuit (from Landolt et al., 2001). The spikes from the IF circuit are
processed to generate an event that is latched on by the external AER circuit, if there is no collision. A
feedback signal (CATCH) is provided by the external AER circuitry along both axes, to indicate that the
event has been latched.

in a latent state. When the external latch becomes available, the CATCH signals go low switching
off the connected NFETs. The current from this part of the circuit stage is diverted to a latch that
relays the events to the external circuitry. For the events to be propagated, the current has to exceed
the pull-down force being applied by the bifn bias. This node also has a feedback connection to the
FIRE node. Thus, the circuit resets immediately after sending the event.

These events are fed to an external latching stage. A transistor level circuit diagram of all the
stages within a pixel is shown in Figure 4.9.

4.2.6 Event Latches and Addressing

In this and subsequent subsections, we present the peripheral AER circuitry as designed by Landolt,
Mitros, and Koch (2001). The layout for this arbitration circuit was generated by computer software
written in the silicon compiler of the L-Edit tool (Tanner-EDA, 2003). The events generated from
each pixel are available to external latches, each event line corresponding to a latch. In effect one
row corresponds to two latches and a column to one latch. This is because the pixels are arranged
laterally, due to which they have a positive and negative response along the rows, but not along
the columns. The latches have an input enable logic based on the AER scheme. As seen in Figure
4.10, the nIE signal is generated when no event line is active, no pixel is sending a request, and
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Figure 4.9. Circuit diagram showing transistor level implementation of a pixel in the spiking-neuron chip.
The adaptive photoreceptor transduces visual information, and a transconductance amplifier (OTA) stage
amplifies the signal content after subtracting the long-term mean. This output current is rectified by a full-
wave rectifier. Positive and negative currents are separated and a leak-current is subtracted to adjust for
zero-error (current in the absence of visual activity). These currents drive P- and N-type integrate-and-fire
circuit. The N-type circuit is followed by an inverter. The outputs of the integrate-and-fire circuits are
input to two event generation circuit blocks. These blocks communicate with the peripheral AER circuitry
to generate requests.
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nIEx

nIEy

nANYy
nCLR

nREQ

nANYx

Figure 4.10. IE generating circuit (from Landolt et al., 2001). This serves as the input enable for the
external AER latches and is active low based on the inputs indicating idle address lines and no collision.

clear signal is not asserted. This nIE signal enables a latch (see Figure 4.11) to store an event being
generated by a spiking pixel. This arrangement of trapping the events by the latches provides the
coordinate location of the event on the chip grid. Thus, we can localize the event and associate an
address by encoding this information in a log2 n manner, where n is the number of rows or columns.
In this chip, we have a pixel array of 5 × 4 which translates into ten rows and four columns. The
number of rows is twice that of the pixel value because one part of the response corresponds to the
positive half, and the other to the negative half.

The way these address-encoders work is that there are pull-down transistors which pull the
address lines to zero - the default value. Moreover, there are some wider transistors, which can
overpower the pull-down FETs to pull some of the lines high, generating an address. As discussed
earlier, this AER scheme utilizes two lines of address for every bit, one for logic ‘1’ (ADDR line),
and the other for logic ‘0’ (ZEROS line). The size of the pull-down FETs was designed considering
that they had to be wide enough to pull the ADDR and ZEROS lines to ground within a reasonably
short length of time. At the same time they had to be weak enough to be easily overpowered so the
lines could be pulled high reasonably quickly. These are inverted to avoid adding more load, that
is, to provide enough driving power. The inverters that drive the nADDR lines are four times wider
than the ones driving nZEROS. This is because the nADDR address bits are taken to the pads and
it is highly advantageous to have high current drive in a signal that goes off-chip. These nADDR
and nZEROS lines are used by the arbitration circuitry.

4.2.7 Arbitration and REQ generation

In this subsection, the arbitration logic circuit generated by the silicon compiler is described. This is
where the event train is used to generate the REQ signal, the collision between simultaneous events
is detected, and the CLR signal is generated to unlock the invalid (collision) state or simply allow
the latches to capture a new event. The collision is detected using the dual inverted address lines:
nADDR and nZEROS. Figure 4.12 shows an active-low circuit implementation. The collision state
is detected by AND-ing each of the ADDR and ZEROS lines, and then OR-ing these outputs to
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nANY

CATCH

nENC

nIE

nEV

CLR

Figure 4.11. AER latch circuit (from Landolt et al., 2001). This digital latch with nIE as enable and
CLR as the disable signal latches the request from a pixel. The successful encoding of the request leads to
generation of an acknowledge signal back to the pixel (CATCH) and a control signal (nANY) to indicate
that a request has been made.

check for all the address bits. The INVALID signal asserted by this logic circuit is used to identify
a collision, if any.

Figure 4.13 shows an active low implementation of the logic circuit. The VALID signal pertaining
to no collision is generated by exclusive-OR-ing the ADDR and ZEROS lines, and then AND-ing the
individual address bit outputs. This is used by another logic-block to assert the REQ line. The idle
state of these address lines is identified by checking if all the address lines are in a low state. The
ADDR and ZEROS lines are individually OR-ed and this output for each address bit is AND-ed to
check if they are all low. If so, the active-low nALLZ signal line is asserted. There are two such
signal lines for the X- and Y-axes.

The digital logic in generating the REQ and CLR signals is shown in Figure 4.14. This circuitry
generates the REQ signal to let off chip circuitry know that the addresses have settled and are ready
to be read. The REQ line should be asserted once the address lines have settled to a steady state, so
it is better to have a buffer precede the VALID and INVALID circuitry to provide the requisite delay
before the generation of request, even in the most unlikely state (Mitros, 2002). This logic-block has
been implemented keeping this criterion in mind.

The VALID, INVALID, and nALLZ lines from both the axes are used to generate the request
or clear the latches in case of a collision. In the collision scenario, first, one spike causes a valid
address to be generated and the VALID flag is raised. A moment later, a second spike collides and
the address gets invalidated. To avoid a glitch on the REQ line resulting from the brief instant when
the VALID line is active, it has to be ensured that the necessary gate is just a little slower. This
gate is shown as the “delayed” NAND gate in Figure 4.14. This gate has to be slow enough to allow
latching of the addresses on the bus and to enable the signals IEx and IEy to disallow latching of
any more addresses.

4.2.8 Scanner Circuitry

A serial scanner circuit is used to read out the signals from a specific pixel in the chip. Scanner
circuits for neuromorphic applications were studied by Mead and Delbrück (1991). This chip employs
a vertical scanner (for rows) and a horizontal scanner (for columns). The scanner consists of a shift
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nADDR<0:n>

AND(ADDR,ZERO)

nZERO<0:n>

nZERO<0:n>

nADDR<0:n>

IV<0:n>

OR(IV)

XOR(ADDR,ZERO) AND(V)

V<0:n>

INVALID

VALID

(a)

(b)

Figure 4.12. Valid-Invalid circuit (from Landolt et al., 2001). (a) The INVALID signal is generated if there
is a simultaneous assertion on both ADDR and ZERO lines. Technically, it is the AND of the ADDR and
ZERO lines individually, and then OR-ing of the output from this stage. (b) The VALID signal is generated
when only one of each pair of ZERO and ADDR lines is high, representing a valid address state. Technically,
it is the XOR of the ADDR and ZERO lines individually, and then AND-ing of the output from this stage.

nADDR<0:n> OR(ADDR)

OR(ZERO)

AND(Z)

Z

nALLZ

nZERO<0:n>

Figure 4.13. Idle state signal generation (from Landolt et al., 2001). The ADDR and ZERO lines produce
an active low idle-state output (nALLZ) when none of them is carrying any address. Technically, it is the
OR of all the ADDR and ZERO lines, and AND of the output of that stage.
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OR(INVALIDx, INVALIDy, ACK)

AND(ALLZx, ALLZy)

AND(INVALIDx, INVALIDy)

Figure 4.14. REQ and CLR signal generation circuit (from Landolt et al., 2001). Based on the VALID,
INVALID and nALLZ signal lines, the REQ line is asserted in case of no collision. The “delayed” NAND
gate ensures that the REQ line is asserted only when all the signals have settled. A collision results in raising
of the INVALID and CLR signals. Acknowledge of a request also asserts the CLR signal.
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register. A logic ‘1’ when stored in a flip flop activates that row or column. A logic ‘0’ disables it.
This circuit is mainly used in this chip to access outputs from a specific pixel, and for tuning of the
photoreceptor response. This circuit is same as that discussed in Section 3.3.6.

4.2.9 Summary

This chip has been fabricated through MOSIS in a standard 1.6 µm process. The layout was
done using the L-Edit tool (Tanner-EDA, 2003). Layout of the spiking-neuron pixel showing the
sub-circuit stages is shown in Figure 4.15. The entire chip was compiled using a silicon compiler
program (User-Programmable Interface: Tanner-EDA, 2003). Computer software was written in
this compiler such that for any given size of the pixel array, peripheral arbitration circuitry layout
was generated automatically. The layout as generated by the computer software for a size of 5 pixels
is shown in Figure 4.16. These digital peripherals circuits were then arranged using the same code
to generate the full layout of the entire chip. The layout generated by the computer code, and a
photomicrograph of the fabricated chip, are shown in Figure 4.17.

4.3 Mixed Signal Design Considerations in the Spiking-Neuron Sensor

Mixed signal designs in CMOS require multiple techniques to achieve success. The spiking-neuron
chip has a complicated design with analog and digital sub-circuits in every processing unit (pixel).
In this chip, the noise sensitive analog circuit is embedded with a digital spike generating circuit in
a single pixel, and has been carefully designed. The following issues that may hamper performance
in a mixed signal architecture have been addressed.

4.3.1 Digital CMOS Process

This chip has been fabricated in a CMOS process for digital designs. A digital CMOS process
optimizes parameters for logic functionality: switching speed, low voltage power supplies, submicron
geometry, and high component density. The process does not address analog design issues related
to process variations, parasitic resistance and capacitance, and parametric variance. Parametric
variance is generally higher for smaller devices. In our chip, we have addressed this by making the
analog transistors bigger than the minimum geometry.

4.3.2 Power Isolation

High frequency noise is coupled to the power lines due to high speed switching of the digital circuits.
Analog circuits are very sensitive to such fluctuations in their biases. An isolated power supply for
analog circuits therefore becomes mandatory. Our chip has a separate analog and digital power
supply line. External low frequency power filtering (a capacitor between power and ground) was
used to eradicate noise coupling effects. This technique, though, becomes ineffective at very high
frequencies due to dominance of inductance and capacitance of the bonding wire and integrated
circuit package.

4.3.3 Ground Noise

The ground reference has a dynamic variance due to substrate currents, and this may induce coupling
of noise from switching transients between grounds across the integrated circuit. Small induced
voltages due to this effect may lead to large amount of current modulation in a circuit like the
current mirror. In our chip, the ground line has been connected to the bonding pads at regular
intervals to reduce the effect of substrate leakage currents (see Figure 4.17).
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Figure 4.15. Layout of the spiking-neuron pixel showing the analog and digital sub-pixels. The internal
AER sub-circuits and analog transducer have been shown.
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Figure 4.16. Layout of the AER arbitration circuit. The address latches, encoders, and arbitration blocks
have been shown for a size of 5 pixels.
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Figure 4.17. Layout of the spiking-neuron sender chip. (a) Layout in the L-Edit tool showing an array
size of 4 × 5 pixels. The various processing sub-circuits including the scanners have been indicated. (b)
Photomicrograph of the fabricated chip in a 1.6 µm process.
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inside the chip also routed off chip

Buffer

Off chip
signal

Bonding PadsOn Chip

Signal distributed

Figure 4.18. Passing signals out of the chip. A buffer amplifier prevents noise off-chip from coupling with
the internal signal line.

4.3.4 Differential-mode Output for Noise Immunity

Our chip operates in a noisy environment and the effects of noise coupling cannot be eliminated
entirely. However, the use of differential circuits greatly minimizes noise coupling by common-mode
signal rejection. In our chip, we have implemented a differential transconductance amplifier (OTA)
that removes the long-time mean signal from the instantaneous response of the photoreceptor, and
converts this differential response into a current (see Section 4.2.2). This reduces the common-mode
noise induced by the digital circuitry on the photoreceptor response and its long term mean.

4.3.5 Off-Chip Signals

The signals going outside a chip have more noise coupling than signals inside it. This couples
external noise on that pin to the circuits connected with that signal line inside a chip. Figure 4.18
shows that a buffer amplifier can be used to prevent coupling of external noise to the internal signal.
In our chip, all the address lines are distributed to several processing blocks for arbitration and
request generation. The addresses lines are also off-chip signals of the AER protocol. We have used
a two-stage inverter to buffer these off-chip going signals (see Figure 4.18).

4.3.6 Layout Considerations

As digital circuits switch, a fast transition can inject a lot of carriers into the substrate. This induces
unwanted currents in analog circuits. For less coupling, analog and digital circuits have been isolated
by a guard ring (see layout in Figure 4.15). Since peripheral transistors are made wider and faster to
make the AER bus run sufficiently fast, they introduce more switching noise than the AER-related
transistors within the pixel. Hence, a guard ring between the peripheral AER circuitry and the
core array of pixels was laid out (see Figure 4.17). The guard ring consists of native and well-type
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Stimulus Pattern

LCD Monitor

Spiking Neuron Chip

Figure 4.19. Setup for characterization of the spiking-neuron chip. The stimulus pattern is generated using
a C program and presented on a LCD screen kept at a distance of roughly 17 inches from the chip.

regions. The native region is tied to ground, while the well-type region is connected to Vdd. Thus,
the native region absorbs the holes, while the well-region absorbs the electrons released into the
substrate by the switching in digital circuit.

A pixel (or array element, more generally) behaves more like another pixel if both are surrounded
by the same type of structures. It is therefore a good design strategy to make dummy artifacts as
the corner rows and columns. In this design, however, no such pseudo-structure has been made
on-chip because of area constraints. Therefore, the pixels bordering the peripheral AER circuitry
show edge effects. We have used a current mirror with leakage current subtraction mechanism (see
Section 4.2.3) to take care of this added noise from the AER circuit, and a threshold can be set for
noise immunity.

Our chip has been fabricated keeping in mind the above mentioned design issues. This does
eliminate noise to some extent but control signal biases are still prone to noise coupling effects. In
the next section, we discuss the characterization results of our spiking-neuron chip.
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4.4 Spiking-Neuron Sensor Characterization

The spiking-neuron chip has been fabricated through MOSIS in a 1.6 µm process on a 2.2 mm × 2.2
mm die. In this section, an initial characterization of the spiking-neuron sender chip is presented.
The experimental set up is as shown in Figure 4.19. Computer software was used to generate a visual
input pattern for the chip, and presented on an LCD screen. The stimulus consisted of a square
wave grating with a spatial frequency of 0.01 cycles/chip-pixel, and a temporal frequency of 1 Hz.
This stimulus was used to present a single sharply rising contrast edge to generate a spike train
on the AER bus. The sharply rising edge causes the contrast to change suddenly and then remain
fixed at a value. This produces a burst of spikes. Then the pixel adapts to the changed illumination
value and the spiking subsides. If the output of the OTA stage after rectification is sufficiently
large to overcome the leakage current, multiple requests are sent on the AER bus (see Figure 4.20).
Each request for the AER bus is arbitrated independently. Hence in the case of multiple spikes
(a burst of spikes) from a particular pixel, the requests are interleaved with requests from other
pixels. The burst length of this sensor is measured by stimulating it with the computer generated
stimulus and by connecting the REQ line directly to the ACK line. This is the fastest operation
mode for the AER bus and is called self-acknowledge mode. It yields the fastest possible event cycle,
taking approximately 62 ns per request-acknowledge cycle. The maximum spike rate over the REQ
line was measured to be 16.34 MHz. The IF circuitry imposes a threshold on the output of the
rectified OTA-circuit output. Thus, each sender pixel fires only in response to a stimulus above a
fixed phototransduced current. Due to inevitable random noise in the analog part of this system, a
sender pixel will fire probabilistically when visually stimulated near a threshold current.

Figure 5.4 shows the variation in the spiking response of the pixel with variation in the contrast
of the stimulus. As stimulus contrast is varied, the burst width increases and then saturates. No
response is seen at very low contrast due to the threshold set by the spike-generating circuitry. The
reason for shorter burst width at lower contrast is due to the smaller photoreceptor output. The
pixel therefore adapts to this small photoreceptor output quickly, so causing activity on the request
line for a shorter time. In case of higher contrasts, the photoreceptor response is large, so the pixel
takes a longer time to adapt, due to which the activity on the request line goes on for a longer time
period. An external circuit consisting of an address comparator and 555 timer was used to record
the length of the burst.

4.5 Summary

The advantages of modular architectures over monolithic implementations have been discussed in
this chapter. The spiking-neuron sender chip described in this chapter can be used to develop a
full-scale sender-receiver system implementing the FD-cell based target tracking scheme. The next
chapter discusses the simulation of such an agent, and possible extension of the monolithic target
tracking system into a modular target tracking agent.
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Figure 4.20. Burst of spikes from a pixel in the spiking-neuron chip. The actual request acknowledge cycle
of the AER bus is of the order of nanoseconds. In this plot, the spike duration has been lengthened with an
external 555-timer circuit to show the burst of spikes. The stimulus was a square wave grating generated by
a computer program, displayed on an LCD screen.
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Figure 4.21. The burst width of the spiking-neuron pixel output versus contrast. The burst width increases
with contrast and tends to saturate. Circles represent the mean of 10 readings each taken from 2 different
pixels. The error bars represent the standard deviation.
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Chapter 5

Target Tracking Agent

This chapter presents simulations which predict the target tracking performance that would be
possible for an autonomous mobile robot using a modified FD algorithm. Tracking is an involved
procedure that requires motor activity along with visual computations. This is necessary to ensure
that the tracking system does not lose sight of the object being pursued. Thus, the implementation
of such a tracking system involves capturing visual data and computing a turning response for the
robot. The FD sensor can be used for generating this turning response. This response is used by
a control system to steer the platform movement of the robot. In this chapter we describe the
performance of the simulated robot without regard to implementation. The implementation of this
system has been suggested in Chapter 6 as the future extension of this work.

The FD-cell based sensor, as has been described in Chapter 3, provides a small-field motion
output that can be scanned out using the scanner circuitry. This individual pixel response can
be summed up over the whole chip to give an approximate small-field response. This output is
proportional to the turning torque response in a fly (Reichardt et al., 1983). Hence, this response
can be used to generate a signal that can control the yaw movement of a motor unit. The fixation
behavior of the fly has been studied and modeled extensively. A simulation and robot implementation
of fly visual orientation behavior has been done by Huber and Bülthoff (1998). Huber and Bülthoff
showed in their study that a large-field motion response can be used to design autonomous agents that
have a fixation behavior in uncluttered scenarios. In our simulations we have considered cluttered
environments and presented an algorithm that can be used by a target tracking agent in such arenas.

5.1 Modifications to the FD algorithm

The FD algorithm as suggested by Reichardt et al. (1989) models target fixation behavior of a fly
from a fixed platform. Therefore, it does not take into consideration the complexity of the optical
visual-field while following a target. During pursuit, the translatory motion of the fly (robot) is
coupled with the rotatory motion required to keep the target in the center of the view field. The
translatory motion of the robot produces an expanding view field with the focus of expansion (FOE)
shifted to one side of the view field due to rotatory motion. If the rotatory motion is small, this
shift is small and can be approximated as a pure translatory motion. However, if the rotatory
motion is large, the FOE shifts completely out of the view field. The robot perceives a pure rotatory
motion in that case. The original FD algorithm considers only the latter case where the motion
is purely rotational. In our algorithm, we have accounted for both these conditions. When the
angular velocity of the robot is smaller than a threshold value, the motion is approximated by a
pure translatory motion. Under this condition, unlike the clockwise and counter-clockwise pooling
as shown in Equations 3.5 and 3.6, pooling of the preferred or null direction motion components
from both “eyes” is computed. So the normalization stage is now represented by:

y+
i =

v+
i

P+
l + P+

r
(5.1)

y−
i =

v−
i

P−
l + P−

r
(5.2)

where the notation is the same as that used in Chapter 3. When the angular velocity of the robot
exceeds the set threshold, the output of the normalization stage is represented by Equations 3.5
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and 3.6. This can be implemented by using a binary signal to switch the positive and negative
components between the two FD chips being used as the sensors.

Also, the original FD algorithm assumes direction selective cells responsible for small-field motion
detection. So the output of Equation 2.21 may be positive or negative depending upon the direction
of motion in front of that eye. The final output of the small-field system, if positive, triggers a
clockwise turning response and vice-versa. Thus, motion in the leftward direction in front of the
right eye will generate a torque such that the robot moves towards the left. This would make the
robot swerve away from the target. In our algorithm, we take only the amplitude of the response
from both left and right side sensors. Therefore, any motion discrepancy on the right side will always
result in a positive response, and similarly for negative on the left side. The response from both the
“eyes” are symmetric. The response of the right side sensor is given by:

Rr(t) =
N∑

i=1

abs
(
[y+

i ]n − [|y−
i |]n)

(5.3)

where the notation is same as that in Chapter 2. The exponent n is used to enhance the target
response, and in our algorithm n is a cubing factor (n = 3). The present iteration of the FD chip does
not include this functionality and modifications to the hardware for the same have been suggested
in Chapter 6.

The final response of the sensor guiding the robot is given as:

R(t) = Rr(t) − Rl(t) (5.4)

Finally, the response from the FD cell based model is a combination of a running average and
its instantaneous response to produce a torque output. It can be shown from basic physics that the
angular displacement of an object on application of a torque is given by a combination of the average
and instantaneous value of the applied torque. The small-field motion output from the FD-sensor
is modeled as:

R(t) = Kfd · Ravg + Rins(t) (5.5)

where Rins(t) is the instantaneous small-field response, Ravg is the average response computed over
N time steps, and Kfd is a constant. Since the average response does not change much, it does not
have much control over the instantaneous angular velocity. In our algorithm, we have used only the
instantaneous response of the FD sensor given by Equation 5.4.

However, it must be noted that as the number of objects in the background increase, so does
the compensation of the output signal. Thus, the strength of the instantaneous small-field response
of the FD sensor goes down. So, a variable gain is required such that it can compensate for the
normalization induced by the background motion components. In our simulations we have handled
this by turning up the gain factor such that the response in a cluttered scenario is also able to induce
a turning response. To compensate for the large response in case of fewer background objects, we
have set a limit for the maximum angular turn the robot can take in one time step. In the next
section we discuss the dynamics of the robot used in our simulations.

5.2 Dynamics of the Simulated Robot

The control signal generated by the FD sensor is used to steer the platform motion of a simulated
robot. As seen in Figure 5.1, we have simulated a system where the robot has a fixed translatory
velocity vr, and the response produced by the FD sensor is proportional to its angular velocity. This
is modeled as:

θ̇r = G · R(t) (5.6)
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Figure 5.1. Sketch of the tracking system used in our simulation. The robot has a translatory velocity vr

modulated by its angular orientation in the world θr. The target moves with a velocity vt in the arena.

where G is the gain of the control system, R(t) is the instantaneous output from the FD sensor, and
θ̇r is the angular velocity of the robot.

This angular velocity generates an angular movement of the robot given as:

θr = θr0 +
∫ t

0

θ̇rdt (5.7)

where θr0 is the initial orientation of the robot and θr is the angular orientation of the robot at time
t. This angular velocity together with the translatory speed vr changes the position of the robot,
given as:

Xr = Xr0 +
∫ t

0

vr cos θrdt (5.8)

Yr = Yr0 +
∫ t

0

vr sin θrdt (5.9)

where Xr0, Yr0 are the coordinates of the starting point of the robot, and Xr, Yr represent the
current position of the robot.

The target moves either linearly or in a sinusoidal manner with a speed vt and oriented as shown
in the figure.

5.3 Simulation Setup

The above model of a robot tracking system has been simulated in MATLAB. The robot was situated
in an arena which was 300 × 300 space-units in size. The simulated world is two dimensional and
the robot can move along both axes. However, the visual field of the robot is only 1-D, that is
the objects and the target have no height. This arena is surrounded by four walls. Each wall is
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Figure 5.2. Visual field of the robot and top view of the arena with robot and objects. The arena is a 2-D
plane 300 × 300 space-units in size. The robot is shown by a diamond (♦), the target by a cross (×), and
fixed objects on the walls by asterisks (∗). The robot’s visual field (VF) is 180◦ and has been indicated in
the top view graphs. The contrast has been scaled for distant objects with KD = 100. (a) and (b) Visual
field of the robot and the top view of the arena with 2 objects on each wall. The target and the fixed objects
are well separated in the visual field. (c) and (d) Cluttered visual field with 20 objects on each wall. The
target can be distinguished by its relative motion to the background. (e) and (f) Blinding effect due to 40
objects on each wall on the arena. The target’s edges are non-separable from the cluttered background.
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composed of variable number of objects controlled by a parameter nobj . The contrast of the objects
varies with distance as:

Ci = min

(
1.0,

KD

Di

)
(5.10)

where Di is the distance of an object from the robot, and KD is the distance within which the
contrast is true (not scaled). The contrast Ci makes the further objects less visible in the robot’s
visual field. The contrast and the number of fixed objects on each wall, as seen by the robot, can
be set as per experimental requirements. The object size varies inversely with its distance from the
robot. Thus, nearer objects cover a larger part of the visual field as compared to further ones. The
visual field of the robot has an angular extent of 180◦. The starting position of the robot (Xr0, Yr0)
and the target (Xt0, Yt0) may also be set as per the experimental requirements. Figure 5.2 shows
the visual field of the robot and the top view of the arena for two, twenty and forty fixed objects on
each wall of the arena. The contrast was scaled for distant objects by setting KD = 100.

In the case of only two objects on each wall of the arena, the target was easily detectable. A
collision was detected when the distance between the target and the robot was within 6 space-units.
This arbitrary threshold was selected assuming that the spatial extent on both the target and the
robot is 3 space-units each. As the number of fixed objects increases to twenty, the robot’s visual
field becomes cluttered. In Figure 5.2e there are forty objects on each wall of the arena. The presence
of this many objects makes the entire visual field extremely cluttered such that no distinction can
be made between the edges of the objects with each other and the target. The top view of the arena
under the discussed three scenarios are also shown.

5.4 Results

In this section, the various results from simulation experiments are presented. The parameters and
background settings have been varied and the results have been plotted.

5.4.1 Experiment 1

In this experiment, the approach behavior of the robot towards a moving target was studied. The
robot speed was fixed to be a constant, vr = 18 space-units/sec. The target moves sinusoidally in
the arena. Its speed along the Y-axis was vt = 12 space-units/sec and it moves sinusoidally along
X-axis with an amplitude of 90 space-units. The initial position of the robot was (150,30) and that
of the target was (180,90), such that the target was on the right side of the visual field (see Figure
5.3). The gain of the control loop was set at G = 200. The contrast scaling factor was set at C = 1
for all the objects (KD infinite). Three sets of stimulus conditions are presented to the robot as
shown in Figure 5.2, however, there was no contrast scaling. In the first case, only the target forms
the 1-D visual field and there are no other fixed objects (nobj = 0). In the second case, twenty fixed
objects are present on each wall of the arena (nobj = 20). In the last case, the background was made
up of forty-five objects on each wall (nobj = 45).

Figure 5.3 shows the robot and the target trajectory for the three mentioned conditions. The
robot was able to track the target successfully in the first two scenarios. It can be seen from the
robot’s trajectory that the response of the FD sensor was stronger when there are no background
objects. This makes the robot follow the target very closely until it collides with the target. In
the second scenario, the presence of twenty objects on each wall of the arena produced motion
components that normalized the response from the FD sensor. So, the response was weaker but
sufficient to track and collide with the object. In the third scenario, the presence of forty-five
objects on each wall makes it impossible to distinguish between the edges of the fixed objects and
the target. So, initially the course of the robot was straight ahead, just the same as it would have had
been if it was moving with its “eyes” closed (no visual input). When the robot becomes sufficiently
close to the target, the strength of the target increases, and thereby causes the robot to swerve
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Figure 5.3. Simulation of a moving target with variable number of fixed background objects. (a) Robot
sees only the moving target and no background objects. It can be seen that the robot’s trajectory is strongly
influenced by the target’s trajectory. (b) Robot sees the target in the presence of 20 fixed objects on each
wall of the arena. The robot’s trajectory is affected by the target in a weaker manner. (c) Robot sees the
target in the presence of 45 fixed objects on each wall of the arena. As seen, the robot was not able to
distinguish between the target and the object till it has come quite close to the target. This late response
by the robot was not sufficient to track the target.
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Figure 5.4. Simulation results for the HR and FD sensors. For small values of KD, the HR sensor is
able to track the target as well as the FD sensor. However, the minimum distance between the target and
the robot increases with reduced contrast scaling in the case of the HR sensor. The FD sensor is more or
less unaffected by the contrast scaling. The collision distance has been set at 6 space-units. The minimum
distance between the robot and the target when the robot is moving without any visual inputs is also shown.
The vertical bars indicate standard deviation over ten simulations.

towards the target. This late movement was not sufficient to track the target and the robot soon
crosses past it. The trajectory of the target is shown by a dashed line, and the robot’s course by a
solid line. The robot implemented by Huber and Bülthoff could fixate only on a single black stripe
on a white background. These results indicate that our sensor could be used for tracking in cluttered
environments as effectively as for tracking a single moving target with no objects.

5.4.2 Experiment 2

In this experiment, we present a comparison of the performance between the HR sensor and the
FD sensor for target tracking. The HR sensor output was obtained by taking only the large-field
response of the FD sensor before the normalization, given as:

RHR(t) = [P+
r − P−

r ] − [P+
l − P−

l ] (5.11)

where the notation is same as that given by Equations 3.1-refeqHRpool2. This was used to vary the
angular velocity of the robot with the control loop gain set at G = 50. The arena was generated
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such that the contrast of the objects was scaled according to their distance from the robot for each
simulation step. The contrast scaling distance KD was varied from 10 to 180 ain steps of 10 to
record data for varying contrast scaling. For this experiment, twenty objects (nobj = 20) were set
on each wall of the arena. The initial position and speed of the robot and the target, and the
target’s trajectory, were not changed from the previous experiment values. The phase of the target’s
sinusoidal motion along X-axis was alternately set to be either along or against the axis orientation.
Ten sets of readings have been taken for each scenario.

The minimum distance between the robot and the target was recorded for all the scenarios for
both HR and FD sensors. The minimum distance is defined as the smallest distance between the
target and the robot during each simulation, which ends with a collision or when the robot goes
ahead of the target (and thus can never catch it). Figure 5.4 shows a plot of the minimum distance
between the robot and the target during the pursuit against the distance after which the contrast
of an object was scaled. The vertical bars show the standard deviation over ten recordings. In the
case of a nearly dark background (KD small), both the HR detector and the FD sensor show a
similar kind of behavior. But as soon as the contrast scaling distance was big enough to make the
walls visible, the HR sensor was not able to track the target as is seen in the figure. The minimum
distance reached by the HR sensor in these cases was nearly equal to the robot’s minimum distance
from the target when it moved with its “eyes” closed (no visual input). On the other hand, the
response of the FD sensor was largely unaffected by contrast scaling and so it was able to track
the target in all experimented scenarios. This shows that the FD sensor can outperform HR sensor
based sensors for target tracking applications.

5.4.3 Experiment 3

In this experiment, the minimum distance between the robot and the target was computed for an
increasing number of objects on each wall of the arena. The number of wall objects nobj were varied
from none to sixty in steps of two. The starting parameters for this experiment were similar to the
first experiment. The contrast scaling factor was set to C = 1 for all the objects.

The simulation results are shown in Figure 5.5. The robot is able to easily track the target
in the case of no background objects. However, when two objects are placed on each wall the
minimum distance recorded by the robot increases. This is due to the fact that the robot’s self
motion produces an apparent motion for the fixed wall objects. Since there are very few background
objects, the normalization by the FD sensor is weak and so the fixed objects also generate a weak
turning response which reduces the overall sensor response leading to an increase in the minimum
distance between the robot and the target. As the number of objects on the walls increases, the
background becomes more balanced on both sides and the normalization suppresses the response due
to fixed objects. This remains true till the objects on each wall reach forty-two. When the number
of objects on each wall are between forty-two and fifty, the minimum distance the target reaches is
greater than the collision threshold but still less than the minimum “eyes” closed distance. These
cases are similar to the last condition observed in Experiment 1. The robot has no clue about the
target for a very long time and when it is sufficiently close to the target, it starts to move towards
it but fails to “collide”. Once nobj > 50, the target’s edge information becomes undetectable by the
sensor. As seen in the plot, this minimum distance is even more than the “eyes” closed minimum
distance.

5.5 Summary

The simulation results show that the FD sensor based tracking algorithm is more robust than the HR
sensor based algorithm. This algorithm might be used for visual tracking applications in cluttered
environments. The modifications suggested in the FD algorithm make our modified algorithm robust
for a larger number of scenarios. In the next chapter we will discuss the limitations in the design of
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Figure 5.5. Simulation results of the minimum distance between robot and target with an increasing
number of objects on each wall of the arena. The minimum distance increases for very few background
objects, and reduces as a larger number of objects appear in the background. The minimum distance
increases again when the number of objects on each wall becomes so high that the edge information of the
target becomes undetectable. The collision distance has been set at 6 space-units. The minimum distance
between the robot and the target when the robot is moving without any visual inputs is also shown.
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the FD chip and circuit level improvements. A suggestion for the modular implementation of this
system will also be discussed.
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Chapter 6

Concluding Remarks

An FD-cell based small-field motion detection chip and a spiking-neuron sensor chip have been
implemented and fabricated during the course of this study. These low-power, compact, real-time
mixed-signal processing chips may be used to implement a modular motion sensing and target
tracking system. A new algorithm has been proposed for target tracking agents. It accounts for the
robot’s own translatory motion as well as the rotatory motion required for tracking. There are a few
modification required in the design of the FD chip to incorporate all the features of the new tracking
algorithm. The FD chip and the spiking-neuron chip have certain limitations, a few due to design
issues, and others simply because of the process variations during fabrication. The following sections
discuss the limitations of this system, the circuit level improvements and the future extension of this
work.

6.1 Discussion

In this section the system level limitations and modifications required to improve upon the design
are presented.

6.1.1 HR Detector Design

The HR detector implementation (discussed in Chapter 3) is more compact and has fewer biases as
compared to the implementation by Harrison and Koch (2000). The high pass filtering of the signal
is left to the band-pass filter characteristics of the adaptive photoreceptor. The Vadapt bias of the
photoreceptor can be used to control the adaptation time (see Figure 3.4). The response of the HR
detector in the FD chip is a current output from a full wave rectifier circuit. This output is sensitive
to the bias condition and the DC offset voltage levels of the photoreceptor and the low-pass filtered
responses. The photoreceptor was biased such that it had a larger DC offset, and this provided
sufficient voltage range for the bidirectional operation of the full wave rectifier circuit.

6.1.2 FD Model Implementation

The FD model implementation includes a normalization circuit that is an over-simplification of a
rather complex shunting inhibition computation. In our VLSI implementation we have assumed the
following:

v+
i (t)

P+
l (t) + P−

r (t)
≈ v+

i (t)
β + [P ccw

r (t) + k∗ · P cw
r (t)]q

This simplification assumes that the response from the background saturates and so there is no
need to use the exponentiation done by the q (q ≈ 0.5) operator. This factor was used in the
original algorithm for matching electrophysiological data. It therefore has no critical influence on the
characteristic response of the sensor. Its omission from the circuit simplifies our design. Moreover,
the denominator has to be non-zero even in the absence of any motion in the visual field (the factor
β ensures this in the right side equation). In the circuit implementation, in this condition, the bias
transistor of the normalizer circuit goes into the triode region of operation and the response from
individual small-field pixels becomes zero.

It seems from the initial characterization results that the range of voltage required by the full wave
rectifier circuit for its normal operation is not available to it. This is because the rectifier circuit is
connected to the NFET mirror circuit from the Gilbert multiplier, which has a small voltage range in
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which all the transistors remain in saturation. Thus, biasing of the full wave rectifier circuit heavily
influences the HR detector and the small-field response from the chip. A solution to this is biasing
the photoreceptor at a higher DC offset value. This, along with biasing of the Gilbert multiplier
circuit such that small current outputs are generated allow this chip to function well within this
range of bias conditions.

It has also been found that the vertical scanner circuitry in the FD chip has been laid out in
flipped manner. This makes the vertical scanners not work and so we cannot get the output from
the entire chip. In the next iteration of this chip, the layout will be corrected to make the vertical
scanners work.

Also, the new tracking algorithm used for the target tracking simulations requires the output
from the FD chips to have an amplitude response only, and not the direction. This modification
can be done by using an absolute value circuit after the small field output has been generated. This
modification will also be incorporated in the next iteration of this chip.

6.1.3 Spiking-neuron Sensor

In the design of the spiking-neuron sender chip, two types of integrate-and-fire (IF) circuits have
been implemented in each pixel, P- and N-type. The P-type IF circuit takes negative current as
input (or gives out positive current at its input node), while the N-type IF circuit draws in current.
However, the current from the full-wave rectifier stage is negative for both the IF circuits. The
leakage current has to be turned up high in order to make the N-type IF circuit work. Therefore,
the Vleakneg bias has to be continuously varied to get a proper response from the spiking pixel. This
error in design makes the sender chip difficult to bias. The solution is as simple as using the P-type
IF circuit for both the positive and negative currents. A more sophisticated way is to use another
P-type mirror on top of the negative current and change its polarity to positive.

6.2 Future Work

The modifications required in the current FD chip will be incorporated and a revised design will
be sent for fabrication soon. Also, it is advantageous to have a common front-end chip for various
motion processing subunits that might be a part of an autonomous mobile agent. So, the future
extension of this work will be the design of modular target tracking architectures as presented in
the following subsections.

6.2.1 Sender-Receiver Tracking Architecture

A suggested implementation of a multi-chip FD-sensor based tracking system is discussed in this
section. A sketch of such a sensor is shown in Figure 6.1. The spiking-neuron sender chip, described
in Chapter 4, is appropriate as the front-end imaging sensor required for this modular system.

The motion computations will be carried out by the receiver chip. The receiver will employ a filter
that integrates the spikes from the sender at each respective pixel position. This re-constructed signal
will then be processed through all the respective stages of the FD-sensor as discussed in Chapter
3. The delayed signal in each pixel is created by a low-pass circuit. The Gilbert Multiplier circuit
correlates the delayed and non-delayed signals, and two such sub-units correspond to a HR type
movement detector. This response is further split by a full-wave rectifier circuit and is normalized
using the normalization circuit. The individual and global small-field response can be computed
by extracting the single pixel small-field output and the sum of all the pixel outputs, respectively.
These compact processing blocks produce a better small-field response because of the potentially
higher spatial resolution of the sender. Thus, this response from the FD-receiver chip will lead to
a robust real-time tracking system. However, during the course of this study, such a system has
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Figure 6.1. Modular Tracking agent with sender and receiver chips. The visual scene activates the sender
chip that transmits the feature information over the high-speed AER bus. The FD receiver chip processes
this information and produces a small-field response. This response is treated by a gain stage and is fed into
a control system that steers the agent in the environment. This movement of the agent induces a change in
the visual scene in front of the sender chip. Thus, it forms a feedback loop and tracks the moving target
such that the response from the sender and receiver system is minimum.

not been implemented. This extension of the present design into a modular implementation of the
tracking system is the future course for this research.

6.2.2 Gronenberg and Strausfeld Tracking System

This work could be extended to implement a more involved target-pursuit system based on the
circuit by Gronenberg and Strausfeld (1991). This is a neural circuit explaining the sex-specific
pursuit of the fly, and has been discussed in Section 2.5. This model explains the smooth pursuit
behavior of insects based on the neural circuitry thought to be present in the acute zone of a male
fly’s eye.

Target-tracking is difficult to do in real-time by even the most sophisticated digital computers.
Analog VLSI systems that process real world data in real-time provide a robust solution. A neu-
romorphic VLSI architecture based on Gronenberg and Strausfeld’s model would be a reliable and
high-speed tracking system. This model could be used to design a modular tracking sensor comprised
of a high-density sender chip and a receiver to do the bulk of the computations. The sender chip
will functionally resemble a spiking-neuron circuit as described in Chapter 3. As discussed in the
previous section, the receiver chip of this modular tracking system is where the motion computations
would take place. Contrast sensitive image information would be transferred to the receiver from
the sender in the form of spike trains. The receiver would then do what is essentially a reconstruc-
tion of the information by utilizing the specific information about the position and contrast of the
image, relayed by the AER bus. This conversion is necessary so that rest of the computations could
be realized by utilizing fast custom analog circuits. The position sensitive response is allowed to
generate what would be a yaw-torque response for the robot housing the sensor. The entire agent
would move and turn as a single unit (here we differ from the Gronenberg and Strausfeld’s model,
which has a body yaw and a head yaw movement). The error-angle computation corresponds to the
measurement of the position from the mid-line to where there is a discontinuity in the motion-field,
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suggesting a small object in front of the background. The basic design of the system would be similar
to the work presented in this thesis. Only the position-detection circuit and weight multiplication
according to the lateral position of the object circuit would be added. The implementation of such
a position-detection circuit has been studied and published (Korrapati, 2001). The output from this
sender-receiver system would control the yaw-turning signal of the robot. This robust system would
present a more involved real-time multi-chip tracking system.

6.3 Summary

The study of biological algorithms and their VLSI implementation provides a road map to develop
highly intelligent agents in the future. The FD cell based small-field circuit and the spiking neuron
model have been implemented in this thesis. The use of the FD chip as a monolithic target-tracking
sensor with simulations of a target tracking agent has been discussed. The need and importance
of modular architectures with growing computations in the focal plane motivates the design of the
multi-chip implementation of this sensor. The implementation of a spiking-neuron chip as the sender
chip in a modular architecture has been described. The use of this contrast transducing sender chip
transcends its role as a sender chip for a target tracking agent alone. It may be used as the front end
for more than one visual motion processing unit on a robot. Further in this thesis, target tracking
in a cluttered environment using the revised FD algorithm has been studied. The simulations show
that our sensor detects and tracks the target even in cluttered environment, as compared to the
fixation of a single stripe by Huber and Bülthoff’s (1998) implementation. This FD cell based
system provides a compact, efficient, and low-power solution for a complicated real-time tracking
problem. The future of the tracking system design will be based on more detailed understanding of
the bio-sensory system. It will provide useful insight for the development of more robust agents.
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